
Encoding Extraction as Inferences

J. William Murdock1, Paulo Pinheiro da Silva2, David Ferrucci1,
Christopher Welty1, Deborah McGuinness2

1IBM Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532, USA

{murdockj,ferrucci,welty}@us.ibm.com
2Knowledge Systems Laboratory

Stanford University
Stanford, CA 94305, USA
{pp,dlm}@ksl.stanford.edu

Abstract

The analysis of natural-language text involves many
different kinds of processes that might be described in
multiple ways. One way to describe these processes is in
terms of the semantics of their requirements and results.
Such a description makes it possible to view these processes
as analogous to inference rules in a theorem-proving
system. This analogy is useful for metacognition because
there is existing theory and infrastructure for manipulating
inference rules. This paper presents a representational
framework for text analysis processes. We describe a
taxonomy of text extraction tasks that we have represented
as inference rules. We also describe a working system that
encodes the behavior of text analysis components as a graph
of inferences. This representation is used to present
browsable explanations of text extraction; in future work,
we expect to perform additional automated reasoning over
this encoding of text analysis processes.

Introduction
Many domains require that conclusions be drawn from an
assortment of unstructured sources (e.g., text, audio,
video). For example, intelligence analysis involves
challenges such as detecting emerging threats that may be
addressed by sources such as news reports. Addressing
these problems typically involves some combination of
extracting structured knowledge from these sources and
then performing additional reasoning to infer
consequences of that knowledge. There are a variety of
metacognition goals that are applicable in this context, e.g.,
explaining how results were obtained, vetting results from
untrusted or unreliable processes, and selecting follow-on
tasks to perform. To be complete, such explanations and
analyses should be based on integrated representations of
extraction and of additional reasoning. However, while
representations of processes for reasoning over structured
knowledge are fairly common (e.g., Davis, Buchanan, &
Shortliffe, 1977; Swartout, Paris, & Moore, 1991;
McGuinness, 1996), there is much less work on
metacognition over processes that extract structured
knowledge from unstructured information.

 One requirement for representing analysis of
unstructured information is a taxonomy of analysis tasks
that is complete enough to accurately describe task
functionalities and abstract enough to hide unnecessary
technical details. Given such a taxonomy, it is possible to
observe the tasks that analysis systems are performing and
record those observations (Ferrucci, 2004).
 We have built such a taxonomy for the analysis of
natural-language text. We have also implemented a system
that records processes (using the terms of this taxonomy)
in a manner that is consistent and compatible with
explanations for processes that use extracted knowledge to
perform additional reasoning. Our system uses these
records to provide browsable explanations, and we intend
to also explore other metacognition goals such as vetting
results and selecting new tasks to perform.
 Two existing projects serve as a starting point for our
work on metacognition over knowledge extraction.
UIMA, the Unstructured Information Management
Architecture, is a framework for integrating software
components that analyze unstructured information such as
text (Ferrucci & Lally, 2004). The Inference Web is a
framework for explaining answers from question
answering systems that manipulate structured information,
and now unstructured information (McGuinness &
Pinheiro da Silva, 2004). These established frameworks
provide a basis for storing and using records of
knowledge-extraction processes.

Background
UIMA provides an infrastructure for integrating analysis
components. An aspect of UIMA that is particularly
important for enabling metacognition is the fact that
analysis components are specified using a declarative
formalism with the following characteristics:

• The formalism is hierarchical, i.e., aggregate
components may be constructed out of a combination
primitive components and/or other aggregate
components.

Source: AAAI Spring Symposium on Metacognition in
Computation. March 21-23, 2005. Stanford, CA.

• The formalism describes input requirements and output
capabilities of a component using a formal ontology.1

 Inference Web provides an infrastructure for providing
explanations from distributed hybrid question answering
systems. It includes the following components:

• A language supporting interoperability of information
manipulation systems. PML � the Proof Markup
Language (Pinheiro da Silva, McGuinness & Fikes,
2004) is used to encode information manipulations.
PML is specified in OWL2, and thus is compatible with
semantic web applications in XML, RDF, and OWL. It
includes content such as sources, inference rules,
inference steps, and conclusions.

• A registrar for managing and storing proof-related
meta-information encoded in PML.

• A browser for viewing information encoded in PML
thus supporting an interactive interface.

• A PML checker service for identifying incorrect
applications of rules in PML documents.

• An explainer for presenting users with explanations for
answers and enabling them to ask follow-up questions
about answers and their explanations.

• An abstractor for rewriting PML documents from
machine-level inferences into human-level inferences
thus supporting explanations at an appropriate (user-
selectable) level of abstraction.

If the existing UIMA architecture encoded its intermediate
and final analysis products as declarative assertions, then it
would be relatively easy to encode its processes as
Inference Web rules. However, UIMA�s internal
representations, which are motivated by common practice
among developers of components that analyze unstructured
information, typically do not produce intermediate results
in the form of declarative assertions (even when their final
products are declarative assertions). Building a complete
trace of a UIMA extraction process thus requires
additional insight into those processes. Consequently, we
have built a taxonomy of reasoning tasks that occur during
knowledge extraction. For each element in the taxonomy,
we have identified the structures that are populated by this
task, and we have created formal assertions that describe
the semantics of those structures. Given this taxonomy, it
is possible to take the results of UIMA-based text analysis
and infer what tasks were performed, what information
was used, and what conclusions were drawn from each of
these tasks.

Illustrative Example
Consider the following English sentence: �Joseph
Gradgrind is the owner of Gradgrind Foods.� A simple

1 Example ontologies of this sort are included in the UIMA
SDK: http://www.ibm.com/alphaworks/tech/uima
2 http://www.w3.org/TR/owl-features/

knowledge extraction system might produce the following
conclusions given that sentence:

• The string �Joseph Gradgrind� refers to an entity
instance of type Person.

• The string �Gradgrind Foods� refers to an entity instance
of type Organization.

• The entire sentence refers to an OwnerOf relation
instance.

• The �Joseph Gradgrind� (Person) reference is the
subject of that OwnerOf relation instance.

• The �Gradgrind Foods� (Organization) reference is
the object of that OwnerOf relation instance.

Figure 1 illustrates these results graphically. The relatively
compact view presented in that figure is ideal for users (or
components) that are exclusively interested in the final
results and not in how those results were obtained.

 Results of this sort might be produced by a UIMA
aggregate analysis engine. Figure 2 shows a representation
of an extraction process for a set of analysis components
producing these results. At the top of the figure are four
references to two sources (one reference to Document 1,
and three references to the extraction ontology). Below

Joseph Gradgrind is the owner of Gradgrind Foods.

Person
(Entity Annotation)

Organization
(Entity Annotation)

OwnerOf
(Relation Annotation)

subject object

Joseph Gradgrind is the owner of Gradgrind Foods.

Person
(Entity Annotation)

Organization
(Entity Annotation)

OwnerOf
(Relation Annotation)

subject object

Figure 1: Sample extraction results.

Figure 2: A sample reasoning trace

Entity Recognition

Joseph Gradgrind (Person) is
the owner of Gradgrind Foods.

Joseph Gradgrind is the owner of
Gradgrind Foods (Organization).

Joseph Gradgrind is the owner
of Gradgrind Foods (OwnerOf).

Joseph Gradgrind (Person)
is the subject of

Joseph Gradgrind is the owner
of Gradgrind Foods (OwnerOf).

Gradgrind Foods (Organization)
is the object of

Joseph Gradgrind is the owner
of Gradgrind Foods (OwnerOf).

Entity Recognition

Relation Recognition

Relation Argument Identification Relation Argument Identification

Joseph Gradgrind is the
owner of Gradgrind Foods.

Document 1

Entity Type:
Organization

Extraction Ontology

Relation Type:
OwnerOf

Extraction Ontology

Entity Type:
Person

Extraction Ontology

that are the five conclusions drawn during this process.
These conclusions are drawn by three different extraction
tasks (Entity Recognition, Relation Recognition, and
Relation Argument Identification). These are three of the
nine tasks in the taxonomy presented in the next section.

The perspective illustrated in Figure 2 is particularly
appropriate for metacognition for a variety of reasons:

• Each conclusion is represented by a distinct node with a
link to the task that drew the conclusion. This facilitates
reasoning (either by a human or a software system)
about how the individual tasks contributed to the end
result.

• Original sources (i.e., the text and the elements of the
ontology) are also represented by nodes. This facilitates
reasoning about the underlying basis of the extraction.

• The arrows between the nodes show the information
flow from original sources to task conclusions. This
facilitates reasoning about the dynamics of the extraction
process including knowledge provenance (Pinheiro da
Silva, McGuinness, & McCool, 2003).

Taxonomy of Primitive Tasks
We divide the process of extracting knowledge from text
into three areas: annotation, coreference resolution, and
knowledge integration. We have identified three distinct
primitive tasks in each of these three areas.
 The annotation tasks involve making assertions about
individual spans of text (a span is defined by a beginning
character position and an ending character position within
a given document, e.g., characters 0-8 of foo.txt). The
example in the previous section includes only annotation
tasks. Below is our list of annotation tasks:

1) Entity Recognition: Requires text and an entity type
in the extraction ontology (i.e., the set of terms that
define the extraction capabilities). Concludes that a
span (i.e., a segment of the original text) refers to an
unspecified entity instance of the specified entity type.
In other words, this task produces a new data item
(called an entity annotation) that is associated with an
entity type and contains a reference to a span of text.
Example: Inferring that the span 0-16 (i.e., �Joseph
Gradgrind�) of Document 1 refers to some
(unspecified) instance of the Person entity type.

2) Relation Recognition: Requires text and a relation
type in the extraction ontology. Concludes that a span
refers to some unspecified relation instance of the
specified relation type; i.e., produces a relation
annotation.
Example: Determining that the span 0-50 (i.e.,
�Joseph Gradgrind is the owner of Gradgrind Foods.�)
of Document 1 refers to some (unspecified) instance
of the OwnerOf relation type.

3) Relation Annotation Argument Identification:
Requires a relation annotation and another annotation
(either an entity annotation or a relation annotation).

Concludes that the latter fills a role (e.g., subject,
object) in the former.
Example: Determining that the subject role in an
OwnerOf relation annotation is filled by a specified
Person entity annotation.

The coreference resolution tasks build on the results of
annotation. These tasks determine what specific instances
the annotations refer to; for example, if one sentence states
that �Joseph Gradgrind is the owner of Gradgrind Foods�
and another states that �Joe Gradgrind lives in New
Jersey,� a coreference process might determine that there is
a single person instance that is referred to separately as
�Joseph Gradgrind� and �Joe Gradgrind.�
 The end result of coreference resolution is an extracted
knowledge base (i.e., a set of entity and relation instances
encoded in the extraction ontology) and links from the
instances in the knowledge base to the annotated text from
which those instances were derived. Coreference
resolution tasks are listed below:

4) Entity Identification: Requires a set of (one or more)
entity annotations. Concludes that these annotations
refer to a particular entity instance (assigning them a
common, new identifier).
Example: Determining that the entity annotations on
�Joseph Gradgrind� and �Joe Gradgrind� refer to
entity instance UID1 and adding UID1 to the
extracted KB.

5) Relation Identification: Requires a set of (one or
more) relation annotations. Concludes that these
annotations refer to a particular relation instance of a
specified relation type with specified values for its
roles.
Example: Determining that the relation annotation on
�Joseph Gradgrind is the owner of Gradgrind Foods�
refers to a relation instance (OwnerOf UID1
UID2) and adding that instance to the extracted KB.

6) Extracted Entity Classification: Requires an entity
instance and a set of entity annotations that refer to it.
Concludes that it has a particular entity type in the
extraction ontology. Typically, the types assigned to
the entity annotations (by Entity Recognition) are used
to select a type for the entity; for example, a voting
scheme may be used to select the most common type
among the annotations for the entity.
Example: Determining that the entity type of instance
UID1 is Person.

Knowledge integration takes an extracted knowledge base
(encoded using the extraction ontology) and produces a
target knowledge base (encoded using the target ontology,
for which the knowledge extraction system is intended to
produce results). In the following examples we introduce
namespace prefixes (Ex: and Ta:) to clearly distinguish the
IDs of entities and relations in the two ontologies.
 Differences between the two ontologies can be an
incidental consequence of using legacy extraction
components to address new requirements. Alternatively,

differences may be deliberate, in order to optimize the
ontologies for their distinct applications. In either case,
tasks such as the following are required to map between
these ontologies:

7) Entity Mapping: Requires a set of entity or relation
instances in the extraction KB. Concludes that an
entity instance in the target KB is derived from these
instances. Note that it is possible for relations to map
to entities or vice versa, depending on representation
choices made in the two ontologies.
Example: Determining that the Ta:X1 entity instance
is derived from the Ex:UID1 entity instance (and
adding the former to the target KB).

8) Relation Mapping: Requires a set of entity or relation
instances in the extraction KB. Concludes that a
relation instance in the target KB is derived from these
instances.
Example: Determining that the (Ta:hasOwner
Ta:X2 Ta:X1) relation instance is derived from the
(Ex:OwnerOf Ex:UID1 Ex:UID2) relation
instance (and adding the former to the target KB).

9) Target Entity Classification: Requires an entity
instance in the target KB and a set of extracted entity
and/or relation instances that this entity instance is
derived from. Concludes that the entity instance is a
member of an entity type in the target ontology (based
on the types assigned to the instances from which it
was derived).
Example: Determining that the entity type of entity
instance Ta:X1 is Ta:PERSON.

Representation
Metacognition is possible if a record of the tasks
performed and their results can be stored, understood, and
reused. We have built a system that enables metacognition
using PML as an inter-lingua representation for
justifications of knowledge extracted by UIMA-compliant
components. PML documents may be used for
representing, combining, exchanging, abstracting, and
presenting information. Thus our PML-based
representation enables the exchange of information
between extraction components and tools in a declarative
and reusable manner.
 Each extraction task has a conclusion that follows from
its inputs. In Figure 2, for example, one of the steps
performed involves the Entity Recognition task
determining that �Joseph Gradgrind� refers to a person.
From this example we generate a node set in PML with the
following content:

• An inference step that links to a representation of the
task performed (Entity Recognition) encoded as a PML
inference rule.

• A conclusion that describes the results of that task (that
�Joseph Gradgrind� refers to a person).

• A set of antecedents, i.e., other node sets whose
conclusions provide inputs to this task. Antecedents of
an Entity Recognition rule would include a node set for
the original text and a node set for an entity type from
the ontology.

PML allows some conclusions to exist with no
antecedents. These node sets are considered direct
assertions and they use sources rather than inference steps
for justification. In our text extraction processes, we deal
with two different kinds of sources: text and ontologies.
The node sets for those sources act as antecedents to the
node sets that involve extraction inference steps.
 PML does not require a conclusions to be written using
one language. Instead, each node set is required to include
a reference to meta-information about the language used to
write the conclusion. In records of extraction processes,
some node sets are direct assertions of raw text; each of
these node sets has that raw text as its conclusion and the
natural language in which the text is written as its
language. Other node sets represent extracted knowledge.
Each of these node sets has a conclusion that is represented
in some logical formalism and includes a link to a
description of that formalism.

Implementation
We have implemented our approach integrating UIMA
with Inference Web. The UIMA platform has been
extended to produce PML traces for the nine primitive
tasks in our taxonomy. Inference Web allows a user to ask
for source provenance and extraction conclusion
explanations. The conclusions in the node sets produced
by this extension fall into the three categories: natural
language direct assertions, traditional knowledge
representation end results, and intermediate statements
about the text. The IWBrowser already included support
for displaying conclusions encoded in a traditional KR
language (KIF). We have extended IWBrowser to also
provide explicit support for displaying node sets whose
conclusions are represented internally as natural-language
text or as logical statements about text. Text is displayed
without any special formatting, while statements about text
are displayed as markup on that text. For example, the
statement indicating that characters 0 to 16 of some
document refer to a member of the Person class is
displayed by highlighting the span from characters 0 to 16
and placing the type, Person, next to that highlighting,
e.g., �Joseph Gradgrind (Person) is the owner of
Gradgrind Foods.� This format is illustrated in Figure 2
and is used in the IW Browser to present information.
 Our resulting system provides an end to end prototype
that has been tested in the domain of intelligence
documents. The prototype allows users to run a set of
UIMA-compliant analysis components on a corpus of
documents and browse the results as an interrelated set of
entity and relation instances. When looking at specific
instances, the users can ask to see the trace for the

extraction process that generated those instances; this trace
is presented in the Inference Web browser.

Future Work
We intend to explore a variety of additional uses of our
taxonomy of extraction tasks and to provide a variety of
extensions to that taxonomy. One of the tradeoffs that we
will explore is the level of granularity that is most useful in
extraction inference specification. While we do not want
to overwhelm end users with detail, we do want to provide
enough information so that they can understand the
reasoning process and quickly identify any assumptions,
uncertainties, or unauthoritative sources that would raise
concern about conclusions. We also intend to perform
automated reasoning over our encoding of the text analysis
processes. This will enable us to, for example, check some
of our extractions for compatibility with other known facts.

Additional Metacognition Capabilities
PML documents based on extraction tasks can potentially
be used for many different metacognition capabilities
including the following: generation of explanations
describing how knowledge is extracted from natural-
language text, computing trust values for extracted
knowledge, and automatically selecting extraction tasks to
perform given some requirements.
 Users of UIMA-based extraction systems can interact
with the system through the IWExplainer dialogue
interface. They may wish to understand a particular
statement in the knowledge base and how it was
determined. The IWExplainer can present a summary of
the sources used, the meta-information associated with
those sources including any trust ratings, a summary of
assumptions used, and an abstraction of any extraction
inferences used. IWExplainer can also invoke the
IWBrowser to let the user interactively explore and
visualize the information manipulation steps involved. For
the example in Figure 2, it could be useful for users to
know that only two sources were used (Document 1 and
the extraction ontology). Users may be interested in
information about those sources such as the authors,
currency, and authoritativeness. Additionally we can
abstract some of the extraction inferences to provide a
simpler visualization of the information manipulation
process. IWBrowser extensions are under development for
abstracting extraction traces at browsing time.
 Considering the diversity of UIMA-compliant
components, users may ask if intermediate and final results
are internally consistent. For example, if the conclusion of
a node set for Entity Recognition is the statement that
characters 0 to 16 of a document refer to a Person, then a
metacognition component could check that 0 to 16 are
valid characters in the text and that Person is a valid type
in the ontology. The taxonomy of primitive tasks plays a
key role towards checking PML records of extraction
processes. In fact, IW tools such as the PML Checker

Service can retrieve formal specifications of inference
rules and match them against a node set�s conclusions and
antecedents. Also, IW includes an inference meta-
language (called InferenceML; Pinheiro da Silva, et al.,
2004) that is used to specify inference rules. The PML
Checker currently is being extended to support verification
of assertions about natural language text, thus enabling the
checking of extraction processes.
 In addition, users may not be familiar with one or more
sources used in the knowledge extraction process. Users,
however, may trust other users who may are familiar with
the sources. Using the IW infrastructure, users may ask for
trust values for extracted knowledge. Trust values for
extracted knowledge are computed from trust values for
sources, which are computed from trust relations among
users and between users and sources. The computation of
trust values is possible if inferences are stored in PML,
node sets storing told information are associated with
IWBase provenance elements, and provenance elements
are part of a network of trust (Zaihrayeu, Pinheiro da Silva,
& McGuinness, 2004).
 Finally, a system could perform metacognition to select
which extraction components to use given some
specifications of user requirements. Having explicit
representations of the inference engines available to the
system and the tasks that those engines perform can
provide the knowledge needed to automatically select
components that are applicable to a given problem.
IWRegistrar provides a mechanism for formally
representing, storing, and accessing components (inference
engines) and the tasks they perform (inference rules); these
mechanisms may be applicable to automated selection and
composition of knowledge extraction software
components.

Extensions to the Taxonomy
The taxonomy described earlier in this document describes
a number of primitive tasks that we have identified.
However, this is not a complete taxonomy of every sort of
task performed by knowledge extraction components. For
example, one common task in extraction involves
identifying canonical and variant names for instances. We
intend to extend our taxonomy to handle a broader range
of extraction tasks.
 Furthermore, the taxonomy of tasks presented in this
document is limited to extraction from text. However,
UIMA is designed to support analysis of a wide variety of
unstructured modalities such as images, audio, and video.
Valuable potential extensions include (1) representing
primitive tasks that are specific to different modalities; (2)
identifying tasks that are performed across different
modalities, possibly by creating more general
formalizations of tasks in our existing taxonomy; and (3)
building a working system that combines multi-modal
extraction with an Inference Web registering component.
We have begun, for example, to consider the task of
explaining extractions from geospatial graphical
information.

Finally, the organization of the primitive tasks presented
here into different sections (annotation, coreference
resolution, knowledge integration) suggests that these
primitive tasks are components of larger, more abstract
tasks. In future work, we will try to formally characterize
these abstract tasks and thus potentially provide more
abstract presentations. The Inference Web explanation
facilities (McGuinness & Pinheiro da Silva, 2004) provide
support for abstract presentations of PML proofs.

Discussion
One approach to explaining reasoning is to list the
inference rules that were invoked along with the specific
values on which those invocations occurred (Davis,
Buchanan, & Shortliffe, 1977). However, such lists are
often too long and complex to act as useful explanations;
one way of addressing this limitation is to present users
with relatively abstract explanations initially and allow
them to �drill down� into the details of specific inferences
only when needed (Swartout, Paris, & Moore, 1991;
McGuinness, 1996; McGuinness & Pinheiro da Silva,
2004). This drill-down process typically grounds out at
the level of atomic, directly asserted facts. In past work,
such facts may have included a link to an original source
(Pinheiro da Silva, McGuinness, & McCool, 2003), but did
not provide the capability to drill down further to get an
explanation of how it was determined that the fact appears
in the source. Instead, it was assumed that the directly
asserted facts were always in some structured form that
required no analysis or that the analysis process that
extracted these facts was atomic and not amenable to
explanation. The taxonomy and representation described
in this paper make it possible to overcome this limitation
of past work by enabling detailed explanation of text
analysis processes. This combination of explaining text
analytics in combination with hybrid deductive reasoning
is a unique contribution of this work.
 There is a significant amount of existing work on
building causal and/or explanatory representations of the
results of text analysis (e.g., Ram, 1994; Mahesh, et al.,
1994; Moldovan & Rus, 2001). Representing analysis
processes is less common. One system that does engage in
metacognition over text analysis processes is Meta-AQUA
(Cox & Ram, 1999), which generates explanations of
reasoning failures in the domain of story understanding to
facilitate automated learning. However, Meta-AQUA�s
representations and learning goals are largely oriented
toward answering questions that are only implicitly
addressed in the text being analyzed. Consequently, the
tasks of interest are ones such as retrieving scripts and
predicting outcomes that are relevant to extracting implicit
information from text. These tasks are complementary to
the tasks described in this paper, which involve extracting
information that is explicitly stated in text.
 We have presented a design and prototype
implementation for a system that integrates text analysis,
reasoning, and explanation to support metacognition. This

paper introduces the key to the integration: a taxonomy of
inference rules capturing the information manipulation
tasks performed in text analysis.

Acknowledgements: This work is partially funded by the
Advanced Research and Development Activity under the
Novel Intelligence from Massive Data (NIMD) program.

References
Cox, M.T. & Ram, A. 1999. Introspective Multistrategy

Learning: On the Construction of Learning Strategies.
Artificial Intelligence, 112:1-55.

Davis, R, Buchanan, B., & Shortliffe, E. 1977. Production
Rules as a Representation for a Knowledge-Based
Consultation Program. Artificial Intelligence, 8:15-45.

Ferrucci, D. 2004. Text Analysis as Formal Inference for
the Purposes of Uniform Tracing and Explanation
Generation. IBM Research Report RC23372.

Ferrucci, D. & Lally, A. 2004. UIMA by Example. IBM
Systems Journal 43(3):455-475 (2004).

McGuinness, D.L. Explaining Reasoning in Description
Logics. Ph.D. Thesis, Rutgers University, 1996.
Technical Report LCSR-TR-277.

McGuinness, D.L. & Pinheiro da Silva, P. 2004.
Explaining Answers from the Semantic Web: The
Inference Web Approach. Journal of Web Semantics
1(4):397-413.

Mahesh, K., Peterson, J., Goel, A., & Eiselt, K. 1994. KA:
Integrating Natural Language Understanding with
Design Problem Solving. In Working Notes from the
AAAI Spring Symposium on Active NLP.

Moldovan, D. & Rus, V. 2001. Explaining Answers with
Extended WordNet. In Proceedings of the 39th Annual
Meeting of the Association for Computational
Linguistics, Toulouse, France.

Pinheiro da Silva, P., Hayes, P. J., McGuinness, D. L., &
Fikes, R. 2004. PPDR: A Proof Protocol for Deductive
Reasoning. Technical Report, Knowledge Systems
Laboratory, Stanford University.

Pinheiro da Silva, P., McGuinness, D. L., & Fikes, R.
2004. A Proof Markup Language for Semantic Web
Services. Information Systems Journal (to appear).

Pinheiro da Silva, P. McGuinness, D. L., & McCool, R.
2003. Knowledge Provenance Infrastructure. IEEE Data
Engineering Bulletin, 26(4):26-32.

Ram, A. 1994. AQUA: Questions That Drive the
Explanation Process. In Inside Case-Based Explanation,
Schank, Kass, & Riesbeck (eds.), pp 207-261.

Swartout, W.R., Paris, C., & Moore, J. D. 1991.
Explanations in Knowledge Systems: Design for
Explainable Expert Systems. IEEE Expert Systems,
6(3):58-64.

Zaihrayeu, I., Pinheiro da Silva, P., & McGuinness, D.L.,
2004. IWTrust: Improving User Trust in Answers from
the Web. Technical Report DIT-04-086, Informatica e
Telecomunicazione, University of Trento, Italy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

