
February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

Journal of Experimental & Theoretical Artificial Intelligence

Vol. 20, No. 01, March 2008, 1–28

Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

J. William Murdock∗ Ashok K. Goel†

(Received August 2006; In final form January 2007

This is a preprint of an article whose final and definitive form has been published in the Journal of Experimental & Theoretical

Artificial Intelligence, Volume 20, Issue 1 March 2008 , pages 1 - 36. Copyright Taylor & Francis; Journal of Experimental &

Theoretical Artificial Intelligence is available online at informaworldTMhttp://www.informaworld.com/10.1080/09528130701472416)

The ability to adapt is a key characteristic of intelligence. This work investigates model-based reasoning for enabling intelligent software
agents to adapt themselves as their functional requirements change incrementally. This article examines the use of reflection (an agent’s
knowledge and reasoning about itself) to accomplish adaptation (incremental revision of an agent’s capabilities). Reflection in this work
is enabled by a language called TMKL (Task-Method-Knowledge Language) that supports modeling of an agent’s composition and
teleology. A TMKL model of an agent explicitly represents the tasks the agent addresses, the methods it applies, and the knowledge it
uses. These models are used in a reasoning shell called REM (Reflective Evolutionary Mind). REM enables the execution and incremental
adaptation of agents that contain TMKL models of themselves.

1 Introduction

An intelligent agent may encounter situations for which it is important to extend its range of capabilities.
Over the life of an agent, changes to the requirements placed on an agent may concern many aspects, e.g.,
performance, constraints, resources, and functionality. In this article, we focus on one kind of requirement
change: incremental change to the functionality of the agent. Specifically, we address the addition of a new
task that is related to some task that agent already knows how to accomplish.

Case-based reasoning addresses a different problem. Given a plan to disassemble a device and the goal
of disassembling another, very similar device, a case-based planner may modify (“tweak”) the known plan
to accomplish the new goal. In fact, this is precisely what ADDAM, a case-based agent for physical device
disassembly [Goel et al., 1997], does. But now consider what may happen when ADDAM is given the task
of generating assembly plans instead disassembly plans. The desired assembly plan in this example has
little structural similarity with any of the known disassembly plans: there is typically no overlap at all in
the operators used because all of the operators are inverted, and while the objects of those operators are
similar, they are typically manipulated in the reverse order. A disassembly plan cannot be easily adapted
into an assembly plan by simple tweaks (which explains why our experiments described later do not contain
a comparison with case-based planning). The class of problems for which case-based reasoning is applicable
is such that (i) the new problem is so closely related and similar to a familiar problem that the solution
to the familiar problem is almost correct for the new problem, and (ii) the solution desired for the new
problem is structurally so similar to the known solution to a familiar problem that the known solution
needs only small modifications (“tweaks”) to obtain the desired solution for the new problem. For this
class of problems, in which the known solution is reused almost completely, case-based planning provides
substantial computational advantages over generative planning; for problem outside this class, however,

∗murdockj@us.ibm.com
IBM Watson Research Center
19 Skyline Dr.
Hawthorne, NY 10532

†goel@cc.gatech.edu
Artificial Intelligence Laboratory
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

2 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

the computational complexity of plan adaptation is no better than that of generative planning [Nebel and
Koehler, 1995].

The key insight in the present work is that although the disassembly plans available in ADDAM’s memory
and the desired assembly plan have little structural similarity, the reasoning processes for producing the
two kinds of plans (assembly and disassembly) are very similar. Therefore, the present work addresses the
problem of adapting the agent’s design, i.e., the architecture of its reasoning processes for accomplishing
its tasks. Thus, the techniques described in this paper can be viewed as constituting meta-case-based

reasoning. The class of problems for which meta-case-based reasoning is applicable is such that (a) the
new task is so closely related and similar to a familiar task that the reasoning process for the familiar task
is almost correct for the new task, and (b) the reasoning process required for addressing the new task is
structurally so similar to the reasoning process required to address the familiar task that it needs only
small modifications to obtain the desired reasoning process for the new task. These conditions can hold
even if the solution to an instance of the new task is not necessarily similar to the solution to any instance
of the familiar task. Our first hypothesis is that for this class of problems, meta-case-based
reasoning can provide substantial computational advantages over generating a plan for an
instance of the new task.

Like case-based reasoning, meta-case-based reasoning sets up the tasks of retrieval, adaptation, verifi-
cation and storage. The work described in this paper focuses primarily on the tasks of adaptation and
verification; we use an off-the-shelf knowledge representation system to provide storage and retrieval.
Adaptation of an agent’s reasoning processes for accomplishing a new task raises several issues:

• Which of the agent’s existing tasks is similar to the new task?

• What are the differences between the effects of the new and existing tasks?

• What elements of the agent’s design contribute to those differences?

• What modifications can be made to the agent to eliminate those differences?

These are all challenging questions. Identifying tasks that accomplish similar effects is challenging be-
cause the effect of some task may be abstract and complex; for example, the assembly task has an effect
that a device is assembled, which is operationalized for a particular device in terms of connections among
that device’s components. Furthermore, there are many dimensions along which abstract effects may be
similar, and only some of these dimensions are likely to be useful in identifying tasks that are appropriate
for adaptation. Computing the differences between effects of tasks involves similar difficulties in working
with abstract and possibly ill-defined specifications. Determining which elements in the agent’s design
contribute to the differences in effects can be challenging because an agent is likely to have many parts
and the contribution that a particular element makes to the ultimate result may be complex. Lastly, de-
termining what modifications to make to an element once it is found can be challenging because a piece of
a computation can have a large variety of direct and indirect effects in a variety of circumstances (making
it very difficult to find a specific modification that accomplishes a desired result). Identifying the elements
to modify and the modifications to make to them is particularly challenging when the following conditions
hold: (1) there is no simple correspondence between task differences and the required modification, (2) the
modification space is very large, and (3) a modification may have many effects, some of which may perco-
late throughout the agent’s design. This leads to our second hypothesis: if an agent has a model
of its own design (a self-model), then, for the class of problems for which meta-case-based
reasoning is applicable, the agent may use the model to identify the elements in its design
that need to be modified (self-adaptation) for accomplishing new tasks.

2 Model-Based Self-Adaptation

To identify part of an agent to modify, it is helpful to have knowledge about how the various parts of
the agent contribute to the overall effect of that agent. The issue of identifying a candidate modification
can be addressed by having a variety of specific types of transformations to accomplish specific types of
differences in behavior. Such transformations can be guided by knowledge about these behaviors. Thus,



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 3

the challenges posed by adaptation in response to new tasks suggest that an agent’s model of itself should
represent its composition and teleology, and in particular:

(i) What the elements of the agent do.
(ii) What the intended effect of the agent is.
(iii) How the elements of the agent are combined to accomplish its intended effect (i.e., the connection

between 1 and 2).
(iv) What sorts of information the agent processes.

The TMK (Task-Method-Knowledge) family of agent models has these characteristics. TMK models
provide information about the function of systems and their elements (i.e., the tasks that they address) and
the behavior of those systems and elements (i.e., the methods that they use) using explicit representations
of the information that these elements process (i.e., the knowledge that they apply). Tasks and methods
are arranged hierarchically: a high level task is implemented by one or more methods, and the methods
are composed of lower level tasks. The explicit representation of the kinds of knowledge that the agent
uses provides a foundation for describing how the tasks and methods affect that knowledge. One aspect of
the research presented here has been the development of a new formalism for TMK models called TMKL
(for TMK Language).

REM (Reflective Evolutionary Mind) is a shell for running and modifying agents encoded in TMKL.
Figure 1 presents the architecture of REM. There are two main components of REM: an execution module
and an adaptation module. The execution module allows an agent encoded in TMKL to run; it works by
stepping through the tasks and the methods specified in the model and applying the indicated knowledge.
The adaptation module modifies the TMKL model of an agent. Because the execution of the agent is
performed by stepping through the model, changes to the model directly alter the behavior of the agent.
For example, if a new method for a known task is added to the model during adaptation, then that method
is available the next time the execution module is selecting a method for that task.

To activate REM, a user provides two kinds of inputs: a partially or fully specified task to be performed
and a set of parameter values for that task. For example, the user of a disassembly agent might specify
disassembly as the task and a specific device (such as a computer or a camera) as the value for the input
parameter for that task. When such a request is made, REM first checks the model of the agent to see if
the task specified is one for which the model provides a method. If it is, REM can immediately invoke its
execution module to perform the desired task. If not, REM must invoke its adaptation module to modify
the model so that it has a method for the given task. For example, if the user of the disassembly agent wants
that agent to instead assemble a device, REM first performs adaptation to build a method for assembly
(i.e., an implementation for that task). If the adaptation module is able to build a method, the execution
module can then perform the desired task. Whenever execution is performed, if it is successful, then the
agent is done. If, however, execution is unsuccessful, then further adaptation is needed; a trace generated
during execution can help support this adaptation. The cycle of execution and adaptation continues until
either execution has succeeded or all applicable adaptation techniques have failed.

REM has four different strategies for performing adaptation.

• Situated learning involves simply trying arbitrary actions and then gradually learning a policy that
leads to the desired result (as specified by the given task).

• Generative planning involves determining a complete sequence of actions that accomplish the desired
result. REM can use this strategy to develop a method for a new task by first building a plan for a specific
parameterization of the task (e.g., disassembling a specified object) and then generalizing that plan to
form a method for the task (e.g., disassembling all objects that have the same design as the original
object). In addition, REM can use this strategy after an execution failure by creating and generalizing
a plan for a single failed subtask.

• Fixed-value production involves adding a highly specialized subtask to a model that provides a
single, fixed value for an output parameter in a specific situation. The main technical challenge that
the algorithm addresses is localization: finding a subtask for which such a modification could potentially
address the observed failure.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

4 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

Adaptation

Task

Input

Values

Model Trace

Execution
Output

Values

Figure 1. The architecture of REM. Large round boxes indicate procedural elements. Small boxes indicate information used and/or
produced by those elements.

• Relation mapping involves finding some known task whose intended effect is directly related to the
effect of the given task via a single relation and then constructing a new method for the given task by
adapting a method for the known task.

In this paper, we focus primarily on the use of relation mapping in adaptation; the other strategies are
also described, but in less detail. The experimental results presented in Section 6.1 primarily illustrate
how relation mapping contrasts with situated learning and generative planning. Relation mapping makes
extensive use of an existing model for a known task, so it has a fairly significant knowledge requirement.
In contrast, situated learning and generative planning require only knowledge of states and actions. In
addition, relation mapping requires extensive reasoning about the model; for large models this can impose
some overhead that situated learning and generative planning avoid. However, the knowledge requirements
for relation mapping, while significant, are frequently obtainable. Furthermore, our experimental results
and theoretical analysis show that while the overhead imposed by reasoning about models can make
relation mapping slower than the alternatives for simple problems, relation mapping provides enormous
speed benefits for more complex problems.

There are three key elements to REM’s approach to supporting flexible reasoning and behavior: (1) a
language for modeling intelligent systems, (2) an algorithm for executing these systems, and (3) a variety
of adaptation strategies capable of modifying these systems. The results presented in this paper provide
validation for this approach by specifically showing how one of REM’s adaptation strategies can use its
modeling language to enable successful execution.

3 Meta-Case Representation

REM uses and adapts representations of reasoning processes encoding in the Task-Method-Knowledge
Language (TMKL). TMKL systems are divided into tasks, methods, and knowledge. A task is a unit
of computation that produces a specified result. A task answers the question: what does this piece of
computation do? A method is a unit of computation that produces a result in a specified manner. A method
answers the question: how does this piece of computation work? Tasks encode functional information; the
production of the specified result is the function of a computation. The knowledge portion of the model
describes the different concepts and relations that tasks and methods in the model can use and affect as
well as logical axioms and other inferencing knowledge related to those concepts and relations. Formally,
a TMKL model consists of a tuple (T, M, K) in which T is a set of tasks, M is a set of methods, and K

is a knowledge base. For more details (including examples) of all three portions of a TMKL model, see
[Murdock, 2001]. A relatively concise overview of this material is provided below.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 5

Table 1. An example of a task in TMKL

(define-task execute-remove
:input (current-object)
:given (:and

(physical-component (value current-object))
(present (value current-object))
(free (value current-object)))

:by-procedure do-remove
:asserts (:not (present (value current-object))))

3.1 Tasks

A task in TMKL is a tuple (in, ou, gi, ma, [im]) encoding input, output, given condition, makes condition,
and (optionally) an implementation respectively. The input (in) is a list of parameters that must be bound
in order to execute the task (e.g., a movement task typically has input parameters specifying the starting
location and destination). The output (ou) is a list of parameters that are bound to values as a result of
the task (e.g., a task that involves counting a group of objects in the environment will typically have an
output parameter for the number of objects). The given condition (gi) is a logical expression that must
hold in order to execute the tasks (e.g., that a robot is at the starting location). The makes condition (ma)
is a logical expression that must hold after the task is complete (e.g., that a robot is at the destination).
The optional implementation (im) encodes a representation of how the task is to be accomplished. There
are three different types of tasks depending on their implementations:

• Non-primitive tasks each have a set of methods as their implementation.

• Primitive tasks have implementations that can be immediately executed. TMKL allows three different
implementations of this sort: an arbitrary Lisp function, a logical assertion that is entered into the current
state when the task is invoked, or a binding of an output parameter to a query into the knowledge base.
Some primitive tasks in TMKL are actions, i.e., their indicated effects include relations that are known
to be external to the agent. Primitive tasks that are not actions result in internal computation only.

• Unimplemented tasks cannot be executed until the model is modified (by providing either a method
or a primitive implementation).

Table 1 presents an example TMKL task called execute-remove. This task appears in the ADDAM
disassembly planning agent (see Section 4 for more details on ADDAM). Performing this task removes a
component from a device. The task has one input, the object to be removed, and no outputs. The given
expression indicates that the task can only be performed when its argument is a physical component, and
is present in the current device, and is free (i.e., is not fastened to or blocked by any other components).
The implementation of this task includes both a procedure (do-remove) and a logical assertion (that the
object is no longer present). For REM to execute that task, the do-remove procedure must be implemented
and loaded; in the ADDAM system, procedures are implemented to interact with a simulated environment,
but one could alternatively invoke functionality in these procedures that effect the real world and observe
the consequences (e.g., through robotic arms and sensors). The parameters for the procedure match the
inputs listed for the task; do-remove takes one parameter, a reference to the object to be removed.

The define-task form in TMKL is represented internally as a set of logical assertions, e.g., (task〉asserts
execute-remove ’(:not (present (value current-object)))). It is expected that most of the information in a
TMKL model will be encoded using these specialized forms; however, if the author of a model has some
information which does not fit into those forms, that information can be encoded as individual assertions.

3.2 Methods

A method in TMKL is a tuple (pr, ad, st) encoding a provided condition, additional results condition,
and a state-transition machine. Like the given and makes conditions of a task, these conditions specify
assertions that must be true before and after execution. However, while the conditions on a task indicate
the function that the task is intended to accomplish, the conditions on a method encode only incidental
requirements that are specific to that particular way of accomplishing that function. For example, a method



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

6 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

for movement that involved driving a car would have a provided condition that a car be available and have
enough gasoline and an additional results condition that the car has moved and has consumed gasoline.
The division of effects into functional effects (associated with a task) and incidental effects (associated
with a method) is useful in guiding the adaptation of tasks; a new or modified method for a given task is
required to satisfy the functional specification of that task (i.e., its given and makes conditions) but may
have entirely new incidental requirements.

The state-transition machine in a method contains states and transitions. States each connect to a lower-
level task and to a set of outgoing transitions. Transitions each contain an applicability condition, a set of
bindings of output parameters in earlier subtasks to input parameters in later subtasks, and a next state
that the transition leads to. The execution of a method starts at the first transition, goes to the state
it leads to, executes the subtask for that state, selecting an outgoing transition from that state whose
applicability condition holds, and then repeating the process until a terminal transition is reached.

3.3 Knowledge

The representation of knowledge (K) in TMKL is done via Loom [MacGregor, 1999], an off-the-shelf
knowledge representation (KR) framework. Loom provides not only all of the KR capabilities found in
typical AI planning system (the ability to assert logical atoms, to query whether a logical expression holds
in the current state, etc.) but also an enormous variety of more advanced features (logical axioms, truth
maintenance, multiple inheritance, etc.). In addition, Loom provides a top-level ontology for reflective
knowledge (including terms such as thing, concept, relation, etc.).

TMKL adds a variety of terms to the Loom base ontology. Some are the core elements of a TMKL
model: task, method, and various components of tasks and methods (e.g., parameter). TMKL also provides
a variety of terms for representing domain information that is frequently useful for reflection. For example,
there are four TMKL terms that represent traits that a relation can have: external-state-relation, internal-
state-relation, external-definition-relation, internal-definition-relation. An external state relation is one that
exists in the environment outside the agent and represents a potentially changeable state. For example, in
the domain of manufacturing, the position of a component is an external state relation: a position can be
observed and changed in the environment. An internal state relation is one that exists within the agent
and can be meaningfully changed. For example, the type of an action in a plan is an internal state relation:
it is possible to change the plan directly within the agent. Definition relations provide information that is
fundamental to the concept and thus cannot change; like state relations, definition relations can be either
internal or external. The distinction between internal and external state relations is particularly important
for adapting an agent because it determines what sort of effects an agent can produce simply by modifying
its knowledge and what effects require action in the world.

Two other terms that TMKL adds to the Loom ontology are similar-to and inverse-of. The similar-to
relation indicates that two pieces of knowledge have similar content and/or purpose; for example, two
tasks that accomplish similar effects would be considered similar-to each other. The inverse-of relation
indicates that two pieces of knowledge have content and/or purpose which are the negation of each other;
for example, two tasks can be run sequentially to produce the same effect as running neither of them are
inverse-of each other. TMKL provides only partial formal semantics for these relations (e.g., a couple of
generic inference rules for determining whether two tasks are similar). Developers of TMKL models are
expected to provide additional information about similarity and inversion that is specific to the domain
in which their system operates. For example, the domain model for manufacturing described in Section 4
includes assertions about inverse manufacturing actions such as screwing and unscrewing.

Because Loom provides a uniform framework for representing concepts and relations, REM is able to
use terms built into Loom, additional terms provided by REM, and terms that are specific to a particular
domain interchangeably. For example, one step of the Relation Mapping algorithm in Section 5.2.3 finds
a relation that maps the effects of two different tasks; such a relation may come from Loom, REM, or a
particular domain, and the algorithm is not affected by this distinction.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 7

3.4 Executing TMKL Models

The algorithm for execution in REM recursively steps through the hierarchy of tasks and methods. Given
a non-primitive task, REM selects a method for that task and executes that method. Given a method,
REM begins at the starting state for that method, executes the lower level task for that state, and then
selects a transition which either leads to another state or concludes the method. At the lowest level of the
recursion, when REM encounters a primitive task it simply performs that task. Throughout the process,
REM builds a trace of execution (to support future diagnosis and adaptation) and monitors for failures.
Details of this execution process can be found in [Murdock, 2001].

Whenever REM needs to select a method for a task or a transition within a method, it checks the
stated applicability conditions of the methods or transitions. If more than one option is applicable, then
reinforcement learning, specifically Q-learning [Watkins and Dayan, 1992], is used to choose among those
options. When the desired effect for the main task is accomplished, positive reinforcement is provided to the
system, allowing it to learn to choose options that tend to lead to success. For large problems, Q-learning
requires an enormous amount of experience to develop an effective policy; gathering this experience can
be very expensive. Consequently, it is recommended that models in TMKL be designed in such a way that
most decision points have mutually exclusive logical conditions. If a very small number of decision points
are left for Q-learning to address, it can develop a policy for those decision points with relatively little
experience.

This execution algorithm is similar to a forward-chaining Hierarchical Task Network (HTN) planner
[Nau et al., 1998, 2003]. The main differences between the two is that REM’s execution involves actually
performing actions as they are encountered rather than just adding the actions to a plan. Consequently,
REM does not perform backtracking when an action fails; instead it restarts the planning process. Fur-
thermore, REM monitors the plan for failures in execution so that it can perform adaptation in response
to failures. The primary research focus of REM has been adaptation, as described in the following section.
The execution algorithm is (intentionally) quite simple, because we expect the power of systems encoded
in REM to primarily come from a combination of powerful methods developed by users to address spe-
cific tasks and powerful adaptation strategies included in REM to improve the range of applicability of
those user-developed algorithms. In contrast, HTN planners generally provide planning algorithms that
are more powerful than REM’s execution algorithm (e.g., that include backtracking), but are generally
helpless when faced with tasks that are even slightly different from the ones for which they have methods.
For more about the relationship between REM and HTN planners, see Section 7.1.

4 ADDAM: An Illustrative Agent Example

One agent that has been modeled in TMKL and executed in REM is ADDAM [Goel et al., 1997]. ADDAM
is a physical device disassembly agent. ADDAM was not created as part of this research; the original
ADDAM system did not contain any representation of itself and thus did not have any ability to reflect on
its own reasoning. Thus ADDAM is a legacy agent for the purposes of the REM project. In our research
on REM, we constructed a TMKL model for ADDAM, connected that model to relevant pieces of the
existing ADDAM code, and conducted experiments involving the execution and adaptation of ADDAM
in REM (e.g., having REM use its model of ADDAM to change the disassembly planning algorithm into
an assembly planning algorithm).

There are two primary reasons why disassembly is a difficult task to automate: (1) the entire sequence
of physical movements for disassembling a device is extremely long and complex, and (2) combining
arbitrary actions to form a sequence that satisfies an arbitrary goal is computationally expensive. ADDAM
addresses the first of those issues by reasoning about devices and actions at a relatively high level; for
example, ADDAM represents the entire process of unscrewing two components as a single atomic action,
even though this process is actually composed of many individual movements. To actually be useful for
automation, a disassembly plan does need to ultimately be translated into robotic movements. ADDAM
has a separate module that addresses this issue by translating individual actions from the high level plan
into combinations of movements for a detailed robot simulator. The experiments of ADDAM within REM



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

8 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

have not included this module at all because it is severely limited, is not part of the main ADDAM system,
and is not particularly relevant to the issues in the REM/ADDAM experiments.

Reasoning about high-level actions does not completely resolve the second issue: the cost of combining
actions to form a goal. Some fairly simple devices seem to be prohibitively expensive to disassemble
without prior knowledge, even when represented and reasoned about at the level of detail in ADDAM
(as demonstrated by experiments described in Section 6.1). The approach that ADDAM takes to this
problem is case-based reasoning; ADDAM adapts old plans for disassembling devices into new plans for
disassembling similar devices.

4.1 ADDAM knowledge

The representation of devices in ADDAM describes not only individual components and connections but
also more abstract subassemblies that are composed of those components and together comprise the
device. The combination of components, connections, and subassemblies forms a topological description
of a device. For example, ADDAM has a representation of a computer that includes a storage subsystem;
that subsystem is, in turn, composed of components such as a hard drive, a controller card, and a cable.

Disassembly plans in ADDAM are also hierarchical in nature; a disassembly plan is based on the topology
of the device that it affects. For example, there is a node in the computer disassembly plan for disassembling
the storage subsystem. That node has children for disconnecting and removing the various components of
the subsystem. The primary benefit of these hierarchical plans in ADDAM is that they allow plans for
entire subsystems to be reused. In the computer example, when a new computer is presented that has two
storage subsystems, ADDAM is able to take the entire portion of the plan for disassembling the storage
subsystem in the original computer and reuse it twice. ADDAM’s process for adapting plans is organized
around the hierarchical structure of the plans and devices, not around the order in which the actions are
to occur. Plans in ADDAM are partially ordered, i.e., instead of having a complete specification of the
order in which actions occur, a plan has an arbitrary number of ordering dependencies which state that
one plan node must be resolved before another.

One example of an object that ADDAM is able to disassemble is a hypothetical layered roof design with
a variable number of boards. The design is very simple, consisting only of boards and screws. However,
the configuration of the roof is such that the placement of each new board obstructs the ability to screw
together the previous boards so the assembly must be constructed in a precise order, i.e., place two boards,
screw them together, and then repeatedly place a board and screw it to the previous board.

The process employed by ADDAM first creates a new disassembly plan and then executes that plan.
Planning in ADDAM is adaptive; it consists of taking an existing plan for disassembling a similar device
and adapting it into a plan for the new device. ADDAM’s method for planning constructs a mapping
between elements of the new and existing devices, converts portions of the plan for the existing device
into analogous portions of the plan for the new device, and then converts the ordering dependencies for
the existing plan into analogous ordering dependencies for the new plan.

5 Meta-Case-Based Reasoning Process

If a user asks REM to perform a task, such as assembling a device, REM first checks to see if that task
already has an existing implementation (i.e., a method or a primitive implementation). If it does not, then
REM needs to employ its meta-case-based reasoning process to adapt its existing knowledge to satisfy the
requirements of the task. That process involves (a) retrieving an existing task that has a method and is
similar to the desired task, (b) adapting a method for the retrieved task to implement the desired task, (c)
verifying that the adapted method does accomplish the desired effect by executing the desired task with
that method, and (d) storing the adapted method for future use when the same task is encountered and
for future adaptation when another similar task is encountered.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 9

5.1 Retrieval

As described in Section 3.3, REM uses Loom as its mechanism for storing and accessing knowledge. To
retrieve an existing task that is similar to some specified task, REM issues a Loom query asking for any
task that has a method for which the similar-to relation holds with the specified task.

Loom decides whether a relation holds in two ways: it may have an explicit assertion in memory indicating
that the relation holds or it may use an inference rule (i.e., a statement that some condition implies that
the relation holds). As noted in section 3.3, REM includes some domain-independent rules for infering the
similar-to relation. For example, REM has a rule that states that task that have similar effects are similar
to each other. It determines that tasks having similar effects if they meet the following requirements:

• They have the same sets of parameters,

• and they have similar given conditions,

• and they have similar makes conditions.

Conditions (i.e., logical expressions encoded in the Loom syntax) condition are identified as similar if
they meet the following requirements:

• They are equal,

• or they both have the form (<operator> <subexpression> ...), and the operators (e.g., :and, :or, :not)
are identical, and each subexpression in one is similar to the corresponding subexpression in the other
one,

• or they both have the form (<predicate> <term> ...), and the predicates are identical, and each term
in one is similar to the corresponding term in the other one.

Terms within a condition are identified as similar if they meet the following requirements:

• They are equal,

• or they are formulas of the form (<relation> <term> ...) and the relations are identical, and each term
in one is similar to the corresponding term in the other one,

• or they are references to concrete instances, and those concrete instances are similar.

Similarity of concrete instances is generally encoded in the knowledge portion of a particular TMKL
model or input knowledge state. Instances may be asserted to be similar via direct assertions (e.g., a
particular problem specification may say that board-1 is similar to board-2), or similarity may be derived
from domain-specific inference rules (e.g., a model may indicate that all screws are similar to each other).

The simple, domain-independent rules for task similarity (grounded in domain-specific rules for instance
similarity) are sufficient for all of the retrieval that was performed in the experiments described in this
paper. However, in other contexts, recognizing similarity among tasks may require more specialized rules.
In those cases, TMKL model developers are expected to add direct assertions and/or additional inference
rules defining similarity of tasks in the domain of interest.

5.2 Adaptation

There are four general varieties of adaptation that have been performed in this research: situated learning,
generative planning, fixed-value production, and relation mapping. The first two of these varieties require
relatively simple knowledge: the primitive actions available, the task to be performed, and the specific
inputs to that task. These approaches create a new method for the given task using those actions. The
other two varieties involve transfer from an existing model. Such a model includes any primitive actions
performed by that agent and also includes one or more existing methods for performing the tasks of
that agent. The model transfer techniques involve modifying the existing methods (including the subtasks
and lower level methods) to suit the new demand. The combination of these four approaches provides a
powerful basis for adaptation in a variety of circumstances.

Fixed-value production has been described in detail elsewhere [Murdock and Goel, 1999a] and is not
used the ADDAM example. The remaining adaptation strategies are described below.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

10 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

5.2.1 Situated Learning Adaptation. If REM is given a description of a task, some inputs, and a
description of available actions, it must be able to generate a method “from scratch”, i.e., without having
any existing method to modify. The situated learning strategy addresses this problem by pure Q-learning,
i.e., it simply tries arbitrary actions and sees what happens. The term “situated” is intended to indicate that
behavior is guided entirely by action and experience and does not involve explicit planning or deliberation.
The situated learning mechanism in REM creates a method that contains no specific knowledge about how
to address the task; the method makes the widest variety of actions possible at any given time. When the
method is executed, all decisions about what to do are made using a policy developed by the reinforcement
learning mechanism.

The algorithm for situated learning adaptation begins by creating a new method for the main task. Next,
a new subtask is created for the method; the method specifies that the subtask is executed repeatedly until
the makes condition for the main task is met. The new subtask is then given methods for each possible
combination of primitive actions and input values that exist in the environment. For example, there is an
action in the disassembly domain called execute-remove that has one input parameter, current-object. If
some task were requested with inputs that contained (for example) five objects, then five methods would
be created each of which invokes that action on one of the objects. The provided conditions attached to
the methods are simply the given conditions for the actions applied to the specific values. For example, if
the inputs of an action include an object called board-1 and the given condition for that action is (present
(value current-object)) then the provided condition for the method that invokes the action on that object
is (present board-1).

The result of this algorithm is a new method for the main task that runs in a continuous loop performing
some action and then checking to see if the desired result has been obtained. This method allows any
possible action to be performed at each step, so all of the decision making required for the process is
deferred until execution time.

5.2.2 Generative Planning Adaptation. Like situated learning, generative planning is also applicable
even if there is no existing method to modify. It’s applicability conditions are more restrictive than those
of situated learning. Specifically, generative planning requires that the effects of each task be known and
be expressible in the formalism employed by a generative planner. In contrast, situated learning can be
accomplished even when effects can only be observed from trying out the actions in the real world or in
a (potentially complex and/or hidden) simulator. Situated learning can even be employed in situations in
which effects are only partially observed and/or may only be aparent after several more actions as long
as the agent can eventually discover whether a task has been successfully performed. However, situated
learning can be extremely expensive (as shown in Section 6.1), especially if feedback about results is
delayed.

The process for using generative planning in REM involves sending the relevant information to an
external planner and then turning the plan that it returns into a method. REM uses Graphplan1 [Blum
and Furst, 1997] as its external planner. The generative planning mechanism in REM can be used not
only before execution to construct a method for a novel main task, but also after a failure to construct a
method for a faulty subtask.

The algorithm for generative planning in REM consists of three parts. In the first part, the task, primitive
actions, and input values provided to REM are translated into a format that the planner can process. In the
second part, the planner is invoked on that information. In the third part, the resulting plan is translated
into a TMKL method for the given task.

The translation from REM to Graphplan in the first part of the process is fairly straightforward. The
makes condition of the task is translated into the goal, substituting the actual input values for references

1The code for Graphplan was downloaded from http://www.cs.cmu.edu/afs/cs.cmu.edu/usr/avrim/Planning/Graphplan/. The code
is Copyright 1995 by Avrim Blum and Merrick Furst. The code includes explicit permission for non-commercial research use (as is
done in REM). The Graphplan executable used in the work described in this article was compiled with the following constant values:
MAXMAXNODES was set to 32768 and NUMINTS was set to 1024. Other than setting these values, the original source code has not
been modified.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 11

to parameters. The given and makes conditions of the primitive actions are translated directly into precon-
ditions and postconditions for Graphplan operators. Facts in the knowledge base which involve relations
that are referenced in an operator are translated into Graphplan facts. Note that this translation may be
incomplete. Loom’s language for representing queries and assertions is much more expressive than Graph-
plan’s language for representing conditions and facts. Loom supports constructs such as subconcepts and
inheritance, universal and existential quantification, etc. If REM is unable to translate some of its facts
or primitive actions into a format which Graphplan can use, it omits them and runs Graphplan with the
information that it can translate. This can lead to an incorrect plan or no plan at all (which can, in turn,
require further adaptation using one of REM’s other mechanisms).

The translation of the plan returned by Graphplan into a TMKL method for REM is somewhat more
subtle than the translation from REM to Graphplan. Some parts of the translation are very direct: the plan
directly specifies the actions and their order. The more complex part of the translation involves inferring
the links between the parameters. If a step in the plan involves a value that has not been used in an
earlier action and is an input parameter to the main task, then the input parameter to the main task is
linked to the corresponding parameter in the primitive action. Additional references to the same value are
translated into links from the parameter in the earlier action to the parameter in the later action. Thus
the method produced can be reused in later situations involving the same task with different values for
the parameters.

The process of extracting a TMKL method from a Graphplan plan is inspired by Explanation-Based
Generalization [Mitchell et al., 1986]. Specifically, it generalizes the plan into a method by inferring rela-
tionships among task parameters; the relationships are encoded as links in the method’s transitions. For
example, if a specific component in a plan is put into place and then attached to that place, REM will
infer a binding between the parameter in the placement action and the corresponding parameter in the
attachment action. The resulting method is a generalization of the plan; it represents an abstract descrip-
tion of how the process can occur, for which the plan is a specific instance. The links between parameters
can be viewed as essentially a form of explanation in that they bridge the gap between the values and the
parameters and thus explain how the effects of the actions in the plan, which are expressed using specific
values, accomplish the overall goal of the main task, which is typically expressed in terms of the task’s
parameters.

In future work, we plan to conduct experiments with REM exporting actions and states to PDDL [Mc-
Dermott, 1998], a standardized language for specifying planning problems. This will allow us to use any
of a wide variety of recent planning systems in place of Graphplan. Because PDDL is much more ex-
pressive than Graphplan’s operator language, such a mechanism could allow a wider variety of actions to
be exported. The primary prerequisite that a planning system must have to be used in this mechanism
is minimal requirements for control knowledge. REM invokes the generative planning adaptation mecha-
nism when it has missing or inapplicable task decomposition knowledge; thus planners that require such
knowledge (e.g., Hierarchical Task Network planners) are not appropriate for this mechanism.

5.2.3 Relation Mapping. If REM has a model, but that model does not include a method for the task
requested, then it must perform adaptation proactively (i.e., before attempting execution). For example, if
REM is given a description of assembly and some assembly actions and a model of a process for disassembly,
it can try to transfer its knowledge of disassembly to the problem of assembly. Figure 2 shows some of
the tasks and methods of the ADDAM hierarchical case-based disassembly agent that are particularly
relevant to this example; the complete ADDAM model contains 37 tasks and 17 methods. For a more
detailed description of that model, see [Murdock, 2001].

The top level task of ADDAM is Disassemble. This task is implemented by ADDAM’s process of planning
and then executing disassembly. Planning in ADDAM involves taking an existing plan for disassembling
a similar device and adapting it into a plan for the new device. ADDAM’s planning is divided into two
major portions: Make Plan Hierarchy and Map Dependencies. Make Plan Hierarchy involves constructing plan
steps, e.g., unscrew Screw-2-1 from Board-2-1 and Board-2-2. The heart of the plan hierarchy generation
process is the creation of a node for the hierarchical plan structure and the addition of that node into
that structure. Map Dependencies involves imposing ordering dependencies on steps in the new plan, e.g.,



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

12 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

Disassembly

Plan Then Execute

Disassembly

Adapt Disassembly

Plan
Execute Plan

Topology Based Plan

Adaptation

Make Plan Hierarchy Map Dependencies

Hierarchical Plan

Execution

Serialized

Dependency Mapping

Select Dependency Assert Dependency

Select Next Action Execute Action

Make Plan Hierarcy

Method

Make Equivalent Plan

Node

Add Equivalent Plan

Node

Figure 2. A diagram of some of the tasks and methods of ADDAM.

the two boards must be unscrewed before they can be removed. The heart of the dependency mapping
process is the selection of a potential ordering dependency and the assertion of that dependency for that
plan. Note that dependencies are much simpler than plan nodes; a dependency is just a binary relation
while a node involves an action type, some objects, and information about its position in the hierarchy.
The relative simplicity of dependencies is reflected in the implementation of the primitive task that asserts
them; this task is implemented by a simple logical assertion (in the task’s :asserts slot) which says that
the given dependency holds. In contrast, the task that adds a plan node to a plan is implemented by
a complex procedure. Given the collection of plan steps and ordering dependencies that the ADDAM
planning process produces, the ADDAM execution process is able to perform these actions in a simulated
physical environment. Execution involves repeatedly selecting an action from the plan (obeying the ordering
dependencies) and then performing that action.

When REM is provided with the ADDAM disassembly process (encoded as a TMKL model) and is
asked instead to assemble a device, it needs to perform some adaptation in order to have a method for
assembly. In this situation, any of three techniques described here (situated learning, generative planning,
and relation mapping) can be used. Because the model for ADDAM includes its primitive actions, the
two kinds of adaptation that combine primitive actions (situated learning and generative planning) could
be applied. Alternatively, because REM has a model in this situation and because there is a task in this
model that is similar to assembly, it is also possible to transfer information from the existing model to the
new task.

Table 2 presents the algorithm for relation mapping. The inputs to the process include a main task,
an implemented task similar to the main task, and a knowledge state in which the main task should be
performed. For example, it could receive an unimplemented task of assembly, an implemented task of
disassembly, and a state in which some components are available but not connected to each other. The
similar task was retrieved earlier in the meta-case-based reasoning process via a Loom similar-to query.
In the assembly example, there is no user-supplied assertion that assembly and disassembly are similar;
rather, the similarity is computed using the rules described in Section 5.1.

The relation mapping algorithm starts by copying the methods (including the methods’ subtasks and
those subtasks’ methods) for known-task and asserting that these copied methods are methods for main-
task. The remaining steps of the algorithm then modify these copied methods so that they are suited to
main-task.

In the next step in the adaptation process, the system finds a relation that provides a mapping between
the effects of main-task and the effects of known-task. The algorithm requires that the selected relation be



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 13

Table 2. Algorithm for relation mapping

Algorithm relation-mapping(main-task)
Inputs: main-task: The task to be adapted

known-task: A task such that (similar-to main-task known-task) holds
current-knowledge-state: The knowledge to be used by the task

Outputs: main-task: The same task with a method added
Effects: A new method has been created that accomplishes main-task within current-knowledge-state

using a modified version a method for known-task.

main-task:implementation = COPY known-task:implementation
map-relation = [relation that connects results of known-task to results of main-task]
mappable-relations = [all relations for which map-relation holds with some relation]
mappable-concepts = [all concepts for which map-relation holds with some concept]
relevant-relations = mappable-relations + [all relations over mappable-concepts]
relevant-manipulable-relations = [relevant-relations which are internal state relations]
candidate-tasks = [all tasks which affect relevant-manipulable-relations]
FOR candidate-task IN candidate-tasks DO

IF [candidate-task directly asserts a relevant-manipulable-relations] THEN
[impose the map-relation on the assertion for that candidate task]

ELSE IF [candidate-task has mappable output] THEN
[insert an optional mapping task after candidate-task]

RETURN main-task

a binary relation defined in either in the specific domain of the agent or in the general TMKL ontology;
from this set of candidates one is chosen that maps values from the makes condition of the main task
to the makes condition of the known task. In the assembly example, the relation used is inverse-of. Other
experiments have employed the relation-mapping algorithm with other relations, such as generalization and
specialization (for example, see Section 6.2). For the assembly problem, the inverse-of relation is selected
by REM because (i) the task of disassembly has the intended effect that the object is disassembled, (ii)
the task of assembly has the intended effect that the object is assembled, and (iii) the relation inverse-of
holds between the assembled and disassembled world states. These three facts are explicitly encoded in the
TMKL model of ADDAM.

Once the mapping relation has been found, the next steps involve identifying aspects of the agent’s
knowledge that are relevant to modifying the agent with respect to that relation. The system constructs
lists of relations and concepts for which the mapping relation holds. For example, ADDAM, being a
hierarchical planner, has relations node-precedes and node-follows that indicate ordering relations among
nodes in a hierarchical plan; these relations are the inverse of each other so both are considered mappable
relations for inverse-of. A list of relevant relations is computed which contains not only the mappable
relations but also the relations over mappable concepts. For example, the assembled and disassembled
world states are inverse of each other (making that concept a mappable concept) and thus some relations
for the world state concept are also included as relevant relations. This list of relevant relations is then
filtered to include only those which can be directly modified by the agent, i.e. those which involve the
internal state of the agent. For example, node-precedes and node-follows involve connections between plan
nodes, which are knowledge items internal to the system. In contrast, the assembled and disassembled states
are external. The system cannot make a device assembled simply by asserting that it is; it needs to perform
actions that cause this change to take place, i.e., inverting the process of creating a disassembled state needs
to be done implicitly by inverting internal information that leads to this state (such as plan node ordering
information). Thus node-precedes and node-follows are included in the list of relevant manipulable relations
while relations over world states are not.

Given this list of relevant manipulable relations, it is possible to determine the tasks that involve these
relations and to modify those tasks accordingly. For each task, REM determines if the effect on the relation
is implemented by a direct logical assertion. If so, REM can simply change that assertion by applying the
mapping relation. If not, REM cannot alter the task itself and must introduce a seperate mapping task to
apply the mapping relation to the relevant manipulable relation.

Figure 3 presents the results of the relation mapping process over ADDAM in the assembly example,
again focusing on those elements that are relevant to this discussion. After the disassembly process is



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

14 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

copied, there are three major changes made to the copied version of the model:

Assembly

COPIED Plan Then

Execute Disassembly

COPIED Adapt

Disassembly Plan
COPIED Execute Plan

COPIED Topology

Plan Adaptation

COPIED Make Plan

Hierarchy

COPIED Map

Dependencies

COPIED Hierarchical

Plan Execution

COPIED Serialized

Dependency Mapping

COPIED Select

Dependency

MODIFIED Assert

Dependency

COPIED Select Next

Action

COPIED Execute

Action

COPIED Make Plan

Hierarchy Method

COPIED Make

Equivalent Plan Node

COPIED Add

Equivalent Plan Node

INSERTED Mapping

Task 1

INSERTED Mapping

Task 2

Figure 3. Tasks and methods produced for the assembly process by adapting ADDAM. Tasks that have been added or modified are
highlighted in grey.

(i) The Make Plan Hierarchy process is modified to adjust the type of actions produced. Because the prim-
itive tasks that manipulate plan nodes (e.g., Make Equivalent Plan Node in Table 3) are implemented
by procedures, REM is not able to directly modify them. Instead, it inserts a new mapping task in
between the primitive tasks (as shown in Table 4). A new state and two new transitions are also added
to the corresponding method. The mapping task alters an action after it is created but before it is
included in the plan. This newly constructed task asserts that the action type of the new node is the
one mapped by the inverse-of relation to the old action type; for example, an unscrew action in an old
disassembly plan would be mapped to a screw action in a new assembly plan.

(ii) The portion of the Map Dependencies process that asserts a dependency is modified. Because the
primitive task for asserting dependencies is implemented as a simple logical assertion (node-precedes),
it is possible to impose the inverse-of relation on that assertion. In the modified model, that relation is
replaced by the node-follows relation. Tables 5 and 6 show this task before and after modification. The
modification is such that if one action was to occur before another action in the old disassembly plan
then the related action in the new assembly plan occurs after the other action (because inverse-of holds
between the before and after relations). For example, if an old disassembly plan requires that boards
be unscrewed before they can be removed, the new assembly plan will require that they be screwed
together after they are placed.

(iii) The plan execution process is modified to adjust the type of actions executed. This adjustment is done
by an inserted task that maps an action type to its inverse. For example, if a screw action is selected,
an unscrew action is performed.

The first and third modifications conflict with each other; if the system inverts the actions when they are
produced and when they are used, then the result will involve executing the original actions. In principle,
if the TMKL model of ADDAM were precise and detailed enough, it might be possible for a reflective
process to analytically deduce from the model that it was inverting the same actions twice. However, the
model does not contain the level of detail required to deduce that the actions being produced in the early
portion of the process are the same ones being executed in the later portion. Even if the information
were there, it would be in the form of logical expressions about the requirements and results of all of the
intervening tasks (which are moderately numerous, since these inversions take place in greatly separated
portions of the system); reasoning about whether a particular knowledge item were being inverted twice



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 15

Table 3. A relevant task in the original model that is implemented by a procedure (since REM cannot directly modify the procedure, it does

not modify this task but instead inserts an optional mapping task immediately after; see Table 4)

(define-task Make-Equivalent-Plan-Node
:input (base-plan-node parent-plan-node

equivalent-topology-node)
:output (equivalent-plan-node)
:makes (:and (plan-node-parent (value equivalent-plan-node)

(value parent-plan-node))
(plan-node-object (value equivalent-plan-node)

(value equivalent-topology-node))
(:implies
(primitive-action (value base-plan-node))
(type-of-action
(value equivalent-plan-node)
(type-of-action
(value base-plan-node)))))

:by-procedure make-equivalent-plan-node-proc)

Table 4. The new task that REM inserts immediately after Make Equivalent Plan Node

(define-task INSERTED-Mapping-Task-1
:input (equivalent-plan-node)
:asserts (type-of-action

(value equivalent-plan-node)
(inverse-of
(type-of-action
(value equivalent-plan-node))))

Table 5. A relevant task in the original model that is implemented by a logical assertion. REM can directly modify this task (see Table 6).

(define-task Assert-Dependency
:input (target-before-node target-after-node)
:asserts (node-precedes (value target-before-node)

(value target-after-node)))

Table 6. Modified task in which node-precedes has been replaced by node-follows

(define-task MODIFIED-Assert-Dependency
:input (target-before-node target-after-node)
:asserts (node-follows (value target-before-node)

(value target-after-node)))

for this problem would be a form of theorem proving over a large number of complex expressions, which
can frequently be intractable.

Fortunately, it is not necessary for REM’s model-based adaptation technique to deductively prove that
any particular combination of suggestions is consistent. Instead, REM can simply execute the modified
system with the particular decisions about which modifications to use left unspecified. In the example,
REM makes the two inserted mapping tasks optional, i.e., the state-transition machine for the modified
methods has one transition that goes into the inserted task and one that goes around it. During the
verification step (described in the next section), the decision making (Q-learning) process selects among
these two transitions. Through experience, the decision making process develops a policy of including one
of the inserted mapping tasks but not both.

5.3 Verification

Once REM has completed the adaptation, it employs the TMKL execution process described in Section 3.4
to accomplish the task that the user requested. If the result requested by the task has been accomplished,
then REM has verified that the adaptation was successful. If not, REM must make additional modifications
and attempt the task again.

If adaptation resulted in a model with multiple execution options, the additional modifications can be as
simple as applying negative feedback to the reinforcement learning mechanism. In the ADDAM assembly



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

16 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

example, REM decides during execution whether to perform each of the optional inserted mapping tasks.
Note that the decision making mechanism used in this example is the same one used in situated learning;
however, here this component is being used only to decide among the options that model-based adaptation
left unspecified. In contrast, the situated learning algorithm uses the Q-learning to select from all possible
actions at every step in the process. The Q-learning that needs to be done to complete the model-based
adaptation process occurs over a much smaller state-space than the Q-learning for the complete problem
(particularly if the problem is, itself, complex); this fact is strongly reflected in the results presented in
Section 6.1.

The use of reinforcement learning to address unresolved redesign decisions makes REM substantially less
brittle than it would be with an entirely rule-based adaptation process. Some domains may be superficially
similar but demand different solutions. For example, some planning domain may have an inverse-of relation
such that plans can be inverted by doing exactly the same actions in the inverse order. In those domains,
a correct adaptation would involve inverting the order of actions but not inverting the action types.
The existing REM system could handle such a domain without any modification; the Relation Mapping
algorithm would still insert the same optional tasks for applying the inverse-of relation to action types,
but the reinforcement learning mechanism would then learn not to use these optional tasks.

If reinforcement learning results in a policy that allows the task to complete successfully (as defined by
its makes condition), the adaptation has been verified. Once verified, the adapted method for the task can
be stored for future use.

5.4 Storage

Since the adapted model is encoded in Loom, it is immediately available for retrieval in response to a future
task (as described in Section 5.1). Loom also provides facilities for storing and loading a knowledge-base
to and from a file. This makes it possible to store REM’s case library and reuse it in a future session.

REM does not attempt to do any special optimization of TMKL model storage beyond what Loom
provides. In future work, it may be useful to build explicit indices over those portions of the TMKL model
that are frequently used to judge similarity (e.g., the given and makes conditions of the main task); we
would expect that this would allow significantly faster access over large repositories of models than a
general-purpose knowledge representation system can provide. For a very large library of models, it would
be infeasible to load all of the known models into memory at once; in that case effective indexing would
be essential (e.g., using a relational or object-oriented database).

In our experience, highly optimized indexing is less crucial for meta-cased-based reasoning then it is
for traditional case-based reasoning. In case-based reasoning, a new case is generated for every distinct
task instance performed (e.g., each device that ADDAM disassembles results in a seperate case); thus
the library of stored cases gets large very quickly. In contrast, meta-cases (e.g., moving from disassembly
to assembly) seem to be much less frequent in practice. However, we believe that there are domains in
which new tasks are moderately frequent and do accumulate over long periods of time. For example, an
sufficiently adaptive world-wide-web agent may be able to operate for years; to do so, it would need to
accumulate many meta-cases to react to the many changes in the tasks that are applicable to the web.
Thus improvements to meta-case storage appear to be a useful topic for future work.

6 Evaluation

Evaluation of REM has involved a variety of experiments and theoretical analysis. Much of this work
has involved the disassembly and assembly problems, using ADDAM. We describe these experiments in
detail in the following subsection. In the next subsection, other experiments are described in less detail;
citations are provided for more information about those other experiments. The final subsection provides
an overview of the theoretical complexity of the various algorithms in REM.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 17

6.1 ADDAM experiments

The combination of REM and ADDAM has been on tested on a variety of devices. Some of these devices
include a disposable camera, a computer, etc. The nested roof example discussed in Section 4 has undergone
particularly extensive experimentation in the course of this research. A useful feature (for the purpose of
our experimentation) of the roof design is the variability in its number of components. This variability
allows us to see how different reasoning techniques compare on the same problem at different scales.

REM’s generative planning and situated learning adaptation strategies involve the use of only the prim-

itive knowledge items and tasks. For example, when using REM with ADDAM, the information required
by REM for generative planning and situated learning involves components (such as boards and screws)
and actions (such as screwing and unscrewing), but does not include anything about ADDAM’s reasoning
techniques or abstract ADDAM knowledge such as hierarchical designs. When using the relation mapping
strategy, REM needs access to the complete TMKL model of the reasoning process. In relation mapping,
REM with ADDAM adapts the design of the existing disassembly agent to address the assembly task.
Thus the results of running these three adaptation strategies provides an experimental contrast between
the use of the model and operating without a model.

The performance of REM on the roof assembly problem is presented in Figure 4. The first series involves
the performance of REM when using ADDAM via relation mapping. The other two data series involve the
performance of REM without access to the full ADDAM model; these attempts use generative planning
(based on Graphplan) and situated learning (based on Q-learning), respectively.1 The key observation
about these results is that both Graphplan and Q-learning undergo an enormous explosion in the cost of
execution (several orders of magnitude) with respect to the number of boards; in contrast, REM’s relation
mapping (with assistance from Q-learning) shows relatively steady performance.

The reason for the steady performance using relation mapping is that much of the work done in this
approach involves adapting the agent itself. The cost of the model adaptation process is completely un-
affected by the complexity of the particular object (in this case, the roof) being assembled because it
does not access that information in any way; i.e., it adapts the existing specialized disassembly planner
to be a specialized assembly planner. The next part of the process uses that specialized assembly planner
to perform the assembly of the given roof design; the cost of this part of the process is affected by the
complexity of the roof design, but to a much smaller extent than generative planning or reinforcement
learning techniques are.

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7

Num be r of Boa rds

E
la

p
se

d
 T

im
e

 (
se

c
o

n
d

s)

REM

REM : Graphplan only

REM : Q-Learning only

Figure 4. Logarithmic scale graph of the relative performances of different techniques within REM on the roof assembly example
(which involves many goal conflicts) for a varying number of boards. The “X” through the last point on the Graphplan line indicates

abnormal termination (see text).

In a related experiment, the same reasoning techniques are used but the design of the roof to be assembled
is slightly different: specifically, the placement of new boards does not obstruct the ability to screw together

1The starting states of the problems ranged from 3 to 39 logical atoms. There is one flaw in the Graphplan data, as noted on the
graph: for the six board roof, Graphplan ran as long as indicated but then crashed, apparently due to memory management problems
either with Graphplan or with REM’s use of it.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

18 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

previous boards. These roof designs contain the same number of components and connections that the roof
designs in the previous problem do. However, planning assembly for these roofs using generative planning
is much easier than for the ones in the previous experiment because the goals (having all the boards put
in place and screwed together) do not conflict with each other. Figure 5 shows the relative performance
of the different approaches in this experiment. In this experiment, REM using only Graphplan is able to
outperform the model transfer approach; because the problem itself is fundamentally easy, the additional
cost of using and transforming a model of ADDAM outweighs any benefits that the specialized assembly
planner provides. This illustrates an important point about model-based adaptation: it is ideally suited to
problems of moderate to great complexity. For very simple problems, the overhead of using pre-compiled
models can outweigh the benefits.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7

Num be r of Boa rds

E
la

p
se

d
 T

im
e

 (
se

c
o

n
d

s)

REM

REM : Graphplan only

REM : Q-Learning only

Figure 5. Logarithmic scale graph of the relative performances of different techniques within REM on a modified roof assembly
example that has no conflicting goals.

These and other experiments have shown that the combination of model-based adaptation and reinforce-
ment learning on ADDAM provides tractable performance for a variety of problems that cannot be handled
effectively by the alternative approaches. Assembly using pure Q-learning is overwhelmingly expensive for
all but the most trivial devices. The Graphplan approach is extremely rapid for relatively simple devices
and even scales fairly well to some devices that contain substantially more components. However, there are
other, similar devices that involve more complex relationships among the components for which Graphplan
is overwhelmed. The adapted ADDAM system is able to handle devices of this sort much more quickly
than Graphplan.

6.2 Logistics Experiments

We have conducted experiments with REM in a domain inspired by the Depot domain in the Third
International Planning Competition [2002]; our domain does, however, have significant differences from
that domain. The competition domain combines elements of block stacking and route planning (boxes are
loaded into trucks, shipped to destinations, and then unloaded at those destinations). Our version uses a
much more structured version of the loading problem in which crates each have a different size, can only
be stacked in order of size, and can only be placed in one of three locations (the warehouse, a loading
pallet, and the truck); this loading problem is isomorphic to the Tower of Hanoi problem, a traditional
illustrative example for AI and planning. In addition, we have eliminated the route planning and unloading
aspects of the problem. In our version, there is only one possible place to drive the truck, and once the
truck arrives, the driver only needs to provide documentation for the shipment (e.g., a purchase order or
manifest) rather than unloading. Thus for a planning problem in which two crates start in the warehouse,
a complete plan would be: (1) move the small crate from the warehouse to the pallet, (2) move the large
crate from the warehouse to the truck, (3) move the small crate from the pallet to the truck, (4) drive to
the destination, and (5) give the documentation to the recipient.

Our TMK model for route planning involves four main-subtasks: selecting documentation for the ship-
ment, loading the boxes, driving to the destination, and delivering the object. The only one of those four



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 19

subtasks that is non-primitive is loading the boxes. That task has two methods, which we have labeled
Trivial Strategy and Nilsson’s Strategy. The former has a provided condition that must hold to be executed:
that there be exactly one crate. That strategy simply moves the crate to the truck. Nilsson’s Strategy, on
the other hand, has no provided condition, i.e., it can be used for any number of crates. It uses a relatively
efficient iterative technique created for the Tower of Hanoi problem; specifically, it is a generalization of the
Tower of Hanoi strategy in [Nilsson, 1998, errata, p. 4]. These two methods are redundant; the behavior of
Nilsson’s Strategy when there is only one crate is identical to the behavior of Trivial Strategy. However, both
methods are included to allow experiments that involve one or the other. For example, we have conducted
an experiment using a variation of the example system in which Nilsson’s Strategy is removed. This system
is able to behave correctly when only one crate is present, but initially fails when more than one crate is
present. That failure leads to adaptation using generative planning, which eventually leads to a correct
solution.

The experiment involving the ablation of Nilsson’s Strategy involved contrasting the following conditions:
(i) REM with a complete model required no adaptation, (ii) REM with the ablated model used generative
planning to address the problem of loading boxes onto the truck and used the existing model to solve the
rest of the problem, and (iii) REM with no model used generative planning to solve the entire problem.
The results from this experiment [Murdock and Goel, 2003] are consistent with the results in the ADDAM
assembly problems: that for harder problems, adaptation of existing hierarchies of tasks and methods pro-
vides a substantial advantage over generative (but for easier problems, the overhead involved in adaptation
outweighs the benefits). For example, with four boxes, we observed the following performance:

• REM with the complete model took approximately ten seconds.

• REM with the ablated model took approximately an hour.

• REM with no model took approximately four and a half hours hours.

The very large difference between the first two conditions is fairly unsurprising: the loading problem is
computationally complex, and Nilsson’s specialized iterative strategy solves it much faster than a general-
purpose planning algorithm. However, the difference between the last two conditions is much more inter-
esting. The ablated model included just three primitive tasks and indicated that loading boxes occured
between the first and second of these tasks. The ablated model had no information on how to load boxes,
which was the computationally complex part of the main task. However, by using the model to handle the
three simple primitive tasks, REM kept the generative planning system from having to consider how these
three primitive tasks interacted with the numerous loading actions. This result illustrates how model-based
adaptation can provide substantial benefits by localizing reasoning to a specific subproblem, even when

the subproblem contains nearly all of the complexity.
We have also conducted experiments in which slightly different tasks were given to REM: delivering boxes

with a more general or more specific type of delivery document than the type employed in the existing task.
REM has no method for addressing this task, but can adapt its existing method by modifying the first step
in the process (selecting a delivery document) to provide more specific or general document. This change
is made using REM’s relationship mapping strategy over the specialization and generalization relations
respectively. This is a very small change to the model, but it illustrates REM’s ability leverage a powerful
existing model even on a new task that violates a requirement of that model. The model was only built
to work with a specific class of delivery documents and fails for more general or more specific documents.
If REM had no ability to reflectively adapt, then it would be forced to solve the entire problem using
generative planning or situated learning. However, the process of loading boxes using Nilsson’s Strategy is
independent of the particular type of documentation that will be provided once the boxes are delivered, it
should be possible to employ the power of this algorithm for this subproblem even when the main problem
to be solved is slightly different. REM’s relationship mapping strategy enables this behavior.

6.3 Other Experiments

We have also conducted experiments using REM and its predecessors in a variety of other domains. One
noteworthy experiment involves adaptation of a mock-up web browsing system intended to mimic the



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

20 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

functionality and behavior of Mosaic 2.4 [Murdock and Goel, 1999b]. In this experiment, the browser
encounters a document of a type that it does not know how to display. A combination of user feedback
and adaptation (using model and trace information) enables REM to localize the portion of the browser
that needs to be modified and to make the appropriate modification.

Another domain that we have studied is meeting scheduling. We have conducted an experiment in which
unexpected demands violate constraints built into an automated meeting scheduling system [Murdock
and Goel, 2001]. The general approach to addressing this problem is very similar to the approach for the
web browsing experiment. The same localization mechanism is applicable to each of these problems, but
different modification strategies are required because the components needing modification are different
(in particular, the relevant portions of the meeting scheduler involve numerical computations, while the
relevant portions of the web browser involve simple logic).

6.4 Computational Complexity

We have performed complexity analyses of the algorithms in REM. Below we summarize the conclusions
that were drawn regarding the running time of the various components of REM under a variety of fairly
simple assumptions. Complete details of these analyses (including presentation and justification of all of
the assumptions) are beyond the scope of this article; instead see [Murdock, 2001].

• The cost of execution (both before and after adaptation) is potentially unlimited because an arbitrary
agent may be arbitrarily expensive to run. It is possible, however, to analyze the extra cost imposed by
the execution algorithm on top of the total costs of executing the pieces of the process separately. Given
a model of size m producing a trace of size t, worst-case extra cost is O(t) under typical assumptions
regarding the structure of the model. An example of one of these assumptions is that the maximum
number of parameters for any single task is bounded by a constant. Execution can be O(m ·t) for models
that violate the typical assumptions.

• The generative planning adaptation mechanism invokes an external planning system, which may be
very expensive. The mechanism does not add any asymptotic cost above the cost of running a typical
external planner.

• Given a trace of size t, the worst-case cost of fixed-value production is O(t) under typical assumptions
but may also be affected by the size of the model, the amount of feedback provided, and the number of
failures detected.

• Given a model of size m, the worst-case cost of relation mapping is O(m2) under typical assumptions
but may be O(m3) for models of unusual configurations.

The combination of these analytical and experimental results forms the evaluation for the work pre-
sented in this article. This evaluation verifies that the representations and reasoning processes presented
in earlier sections are able to effectively address a variety of problems including some problems that are
computationally expensive for techniques that do not employ a model.

7 Related Research

7.1 Generative Planning

Generative planning [Tate et al., 1990] involves constructing a sequence of actions that lead from a start
state to a goal state. Recent advances in generative planning [e.g., Blum and Furst, 1997, Hoffmann and
Nebel, 2001] have provided systems that are much faster than earlier techniques. However, the problem of
assembling an entire plan for a complex goal given only descriptions of actions is fundamentally very hard,
and thus even modern techniques can require an enormous amount of computation for complex goals.
Furthermore, traditional generative planning systems make no use of past experience. Thus the enormous
cost of constructing a plan must be incurred over and over.

Generative planning and model-based adaptation are similar in that they both involve explicitly deliber-
ating about what actions to perform. However, model-based adaptation involves reusing existing processes,



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 21

and the processes that it reuses are encoded as functional models of reasoning strategies rather than simple
combinations of actions. The reuse capabilities of model-based adaptation can be a substantial advantage
in efficiency (as shown in Section 6.1). However, model-based adaptation alone has a significant drawback
in that it is helpless if there is no relevant reasoning process or if even one part of the existing reasoning
process is completely unsuited to some new demands. Consequently, REM combines these two approaches;
existing processes are reused through model-based adaptation when possible, and when a process or some
portion of a process cannot be reused, then generative planning and/or reinforcement learning are em-
ployed.

One major difference between TMKL models and many kinds of plans is that the former are hierarchical
while the latter are flat sequences. However, it is possible to build hierarchical plans in which high-level ac-
tions are decomposed into more detailed low-level actions. Hierarchies of actions provide explicit knowledge
about how the low-level actions combine to accomplish particular subgoals [Sacerdoti, 1974]. Like TMKL
models, hierarchies of actions are an additional knowledge requirement that can enable avoidance of the
potentially explosive cost of sifting through many different possible combinations of actions. It is possible
to avoid this knowledge requirement for hierarchical planning by automatically learning hierarchies [e.g.,
Knoblock, 1994]. This approach sacrifices some of the efficiency benefits of hierarchical planning (because
there is some cost to learning hierarchies) in exchange for weaker knowledge requirements.

One approach to hierarchical planning that is particularly closely related to this research is Hierarchical
Task Network (HTN) planning [e.g., Erol et al., 1994]. Models in TMKL resemble HTN’s in that both
involve tasks that are decomposed by methods into partially ordered sets of subtasks. REM uses TMKL
for modeling and executing reasoning processes while HTN’s typically are used for planning. There are
two other key distinctions between the TMKL and HTN formalisms:
1) TMKL models may include primitive tasks that are external actions that must be performed immedi-
ately in the real world. While such tasks include conditions that specify their effects, those specifications
can be incomplete and some effects may not be deterministic. This capability does not require additional
syntax and is only a subtle difference in the semantics of the formalism. However, it has significant impact
on the methodological conventions that are appropriate for those formalisms. A typical HTN has numerous
points at which alternative decisions can be made (e.g., multiple applicable methods for a task or multiple
orderings of subtasks for a methods); HTN’s tend to be relatively descriptive, i.e., they encode all the dif-
ferent ways that a task may be accomplished rather than prescribing a particular strategy for addressing
a task. In contrast, TMKL models tend to be much more prescriptive; most branches or loops in a typical
TMKL process have precise, mutually exclusive conditions describing what path to take in each possible
state. TMKL does allow some decision points to be unspecified; these decisions are resolved by reinforce-
ment learning. However, since a TMKL system cannot backtrack, and instead must start its reasoning
over from the beginning whenever it reaches a failed state, acceptable performance is only possible when
there are very few unspecified decision points.
2) TMKL encodes information in tasks and methods that is not directly needed for performing those
tasks and methods but that is important for reflective reasoning (e.g., similarity inference rules, makes
conditions for top level tasks). Such reasoning includes determining when a system has failed, modifying
a system to correct a failure, and using portions of a system to address a previously unknown task. For
example, if a new unimplemented task is provided that has similar given and makes conditions to some
existing implemented task, REM can reuse parts of the implementation of the existing task to construct an
implementation for the new task. In contrast, HTN’s are primarily used in systems that assume a complete
and correct HTN exists and that only attempt tasks encoded in the HTN. When automatically learning of
HTN’s is done [Ilghami et al., 2002], existing HTN’s are not reused and extensive supervision is required.

7.2 Case-Based Planning

Case-based planning involves plan reuse by retrieving and adapting past plans to address new goals [Ham-
mond, 1989]. As described earlier, ADDAM is a case-based planner. In contrast, REM’s model-based
adaptation techniques constitute meta-case-based reasoning.

Case-based planning can be more efficient than generative planning in domains in which there is a



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

22 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

plan in memory that is extremely similar to the desired plan and the retrieval method can make use of
domain-specific plan indexing [Nebel and Koehler, 1995]. If a structurally similar plan is available then it
can be tweaked for the current goal. In domains in which causal models are readily available, model-based
techniques can be used to adapt the old plan. KRITIK, a case-based system for designing physical devices,
for example, uses a structure-behavior-function (SBF) model of a known physical device to adapt its design
to achieve device functionalities [Goel et al., 1997].

If a structurally similar plan is not available, case-based planning might still work if plan retrieval and
adaptation are partially interleaved and adaptation knowledge is used to retrieve an adaptable plan [Smyth
and Keane, 1998]. This strategy will not work in the domain of device assembly because, firstly, ADDAM’s
disassembly plans for a given device are structurally similar to one another, and, secondly, the causal
structure of an assembly plan for any device is different from the causal structure of the disassembly plan
for that device. Alternatively, it is possible to combine case-based and generative planning to solve different
portions of a planning problem [Melis and Ullrich, 1999]. This can provide some of the efficiency benefits of
case-based planning and still keep the breadth of coverage of generative planning. However, it still suffers
from the cost problems of generative planning when cases are not available and the limited nature of plan
adaptation when they are available.

In some domains, it is possible to use learning to enhance the original planning process itself. For
example, PRODIGY [Veloso et al., 1995] uses a variety of techniques to learn heuristics that guide various
decision points in the planning process. Learning enhancements to planning can be used for a wide range
of effects, such as improving efficiency via derivational analogy [Veloso, 1994] or improving plan quality
via explanation-based learning [Pérez and Carbonell, 1994]. However, these techniques assume that there
is a single underlying reasoning process (the generative planning algorithm) and focus on fine tuning that
process. This is very effective for problems that are already well-suited to generative planning, making
them even more well-suited to planning over time as the planner becomes tuned to the domain. However,
it does not address problems that are ill-suited to planning to begin with. If a problem is prohibitively
costly to solve at all by generative planning, then there is no opportunity for an agent to have even a single
example with which to try to improve the process.

Some case-based reasoning approaches explicitly reason about process. For example, case-based adapta-
tion [Leake et al., 1995] considers the reuse of adaptation processes within case-based reasoning. Case-based
adaptation does not use complex models of reasoning, because it restricts its reasoning about processes to
a single portion of case-based reasoning (adaptation) and assumes a single strategy (rule-based search).
This limits the applicability of the approach to the (admittedly quite large) set of problems for which
adaptation by rule-based search can be effectively reused. It does provide an advantage over our approach
in that it does not require a functional model and does not require any representation of the other portions
of the case-based reasoning process. However, given that agents are designed and built by humans in the
first place, information about the function and composition of these agents should be available to their
builders (or a separate analyst who has access to documentation describing the architecture of the agent)
[Abowd et al., 1997]. Thus while our approach does impose a significant extra knowledge requirement,
that requirement is evidently often attainable, at least for well-organized and well-understood agents.

The output of a case-based planner is a plan to address a specific goal from a specific starting state. The
output of meta-case-based reasoning is a new reasoning process that can potentially produce plans for a
variety of starting states. Once a meta-case-based reasoning process for generating disassembly plans is
adapted to generate assembly plans, REM can directly invoke its method for generating an assembly plan
each time a new assembly goal is presented (and can still invoke its method for generating a disassembly
plan when a disassembly goal is presented to it). Note that while the meta-level reasoner may be viewed
as case-based, the object-level reasoner, e.g., the planner for generating disassembly plans, need not be
case-based; the ADDAM example described in detail in this paper shows meta-case-based reasoning over
a case-based planning process, but the other examples discussed in Sections 6.2 and 6.3 involve REM
adapting other sorts of processes.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 23

7.3 Machine Learning

Reinforcement learning [Kaelbling et al., 1996] is one popular machine learning technique. An agent oper-
ating by reinforcement learning alone simply tries out actions, observes the consequences, and eventually
begins to favor those actions that tend to lead to desirable consequences. A major drawback of this ap-
proach, however, is that extensive trial and error can be extremely time consuming. Furthermore, the
learning done for one particular problem is typically not at all applicable for other problems, so adapting
to new challenges, while possible, is often extremely slow; reinforcement learning is very flexible but, unlike
model-based adaptation, does not make any use of any deliberation or existing reasoning strategies.

Explanation-Based Generalization (EBG) [Mitchell et al., 1986] is a learning technique that is similar to
model-based adaptation in some respects. Both model-based adaptation and EBG use extensive existing
knowledge to perform learning based on a single situation rather than aggregating information from a
large quantity of isolated instances. EBG has been used for learning of robot assembly plans [Segre, 1988].
More recently, DerSNLP [Ihrig and Kambhampati, 1997] has used EBG for repairing plans and learning
planning knowledge. As described in Section 5.2.2, REM too uses a variation of EBG within its generative
planning mechanism, specifically in generalizing a plan into a reusable TMKL method. However, there are
major differences between REM as a whole and EBG; specifically, REM is a multi-strategy shell that uses
both process and domain knowledge to learn to address new tasks while EBG uses a single strategy based
only on domain knowledge to learn classification (or planning) rules.

7.4 Meta-Reasoning

A wide range of past work has looked at the issue of reasoning about reasoning. One research topic in this
area is meta-planning. For example, MOLGEN [Stefik, 1981] performs planning and meta-planning in the
domain of molecular genetics experiments. As another example, PAM [Wilensky, 1981] understands the
plans of agents in stories in terms of meta-planning. Both of these systems perform planning in the context
of extensive background knowledge about the domain and the available reasoning mechanisms. MOLGEN
divides this background knowledge up into distinct levels and reasons about them separately while PAM
uses a single integrated level for all sorts of reasoning and meta-reasoning.

Meta-planning and model-based adaptation both make use of extensive knowledge about both a domain
and a set of reasoning mechanisms. However, meta-planning draws on a fixed form of representation (plans)
and a fixed set of reasoning mechanisms (such as least-commitment planning). In contrast, model-based
adaptation allows an agent’s designer to encode a wide range of knowledge and reasoning and then uses
its own adaptation mechanisms to make adjustments as needed. MOLGEN’s reasoning mechanisms are
heuristic search and least-commitment planning, while PAM’s mechanisms include various forms of plan
reuse and generation. The existence of a fixed set of strategies is both a benefit and a drawback to the
meta-planning approach. The benefits of the fixed strategies lie in the fact that representations of strategies
are broadly applicable; in contrast, anyone developing agents in REM must provide a separate model of
the reasoning mechanisms for every agent. The drawbacks of the fixed strategies lie in the fact that other
forms or reasoning are not supported. Thus, for example, someone building a meta-reasoning agent that
is guaranteed to only ever need to reason by heuristic search and least-commitment planning may wish to
use the meta-planning mechanism in MOLGEN. However, someone building a meta-reasoning agent that
includes a broader or simply different variety of reasoning techniques would be better served by REM.

The reasoning architecture used in Guardian and a variety of related agents [Hayes-Roth, 1995] also
uses planning to guide planning. Unlike PAM and MOLGEN, however, planning operators in Guardian’s
architecture are much more elaborate than traditional planning operators. Operators in that architecture
include not only requirements and results but also tasks involving perception, prioritization, additional
planning, etc. These operators enable adaptive reasoning because the effects of one operator can influence
the selection and scheduling of other operators. The most substantial difference between REM and the
architecture used in Guardian is that the adaptation operations in the latter are defined within the agent

using the language of the architecture. In contrast, the adaptation processes in REM are defined within the

architecture (they are also defined in the language of the architecture; REM does contain a TMKL model
of its own reasoning, including its adaptation strategies). This difference has considerable implications



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

24 Meta-Case-Based Reasoning: Self-Improvement through Self-Understanding

for the kinds of adaptation performed. Adaptations in Guardian are very simple, involving results like
switching a mode. Furthermore, they are very specialized to a particular kind of situation in a particular
domain. However, there are a great number of these adaptations and they are invoked frequently and
rapidly during execution. In contrast, adaptation in REM involves large, complex processes that can make
many changes to diverse portions of the agent. REM has only a few adaptation strategies and some of
these strategies can be very expensive. However, the adaptation strategies that REM does have work for
a broad variety of domains and problems.

The architecture for Guardian seems particularly well suited to Guardian’s domain: life support moni-
toring. This domain is complex and dynamic enough that adaptation is very important. It is also a domain
that demands great speed and reliability; adaptation must be performed with minimal computation and
the particular kind of adaptation performed must be one that has been tested or proven to be correct.
It is not acceptable for Guardian to just try some sort of adaptation and see if it works out. Specialized,
domain-specific adaptation operations seem to be the most effective way of obtaining this behavior. In
contrast, the web browsing domain, for example, not only allows an agent to try out new kinds of behaviors
but even demands that an agent do so. It is virtually impossible to build a set of pre-specified adaptations
that handle the entire diversity of circumstances a web agent could encounter. Even if one did build such
a set of adaptations, it would rapidly become obsolete as the web changes. Fortunately, web browsing does
not require the speed and reliability that Guardian’s domain does. Thus the slower and less certain but
more generic and more dramatic adaptation mechanisms in REM are appropriate.

Another area of research on meta-reasoning involves allocation of processing resources. MRS [Genesereth,
1983] is a logical reasoning architecture that uses meta-rules to guide the ordering of inference steps.
Anytime algorithms [Boddy and Dean, 1989] perform explicit deliberation-scheduling to allocate processing
time to a set of algorithms that make incremental enhancements to an existing solution to a problem.
Similarly, the Rational Meta-Reasoning approach [Russell and Wefald, 1991, Chapter 3] computes the
expected benefits of applying algorithms versus simply acting. The main difference between model-based
adaptation and reflective processing time allocation is that the former focuses on meta-reasoning to alter
the functionality of a computation while the latter focuses on controlling the use of time in a computation.
Consequently, the two perspectives are more complementary than competing, and there is a potential for
future work to explore the synergy between functional and non-functional reflection.

7.5 Agent Modeling

The field of agent modeling provides an important perspective on the question of what information provides
a useful representation of a process. The primary difference between the work in this article and existing
work on agent modeling is that our work uses agent models for automated self-adaptation to perform
previously unknown tasks. Most other agent modeling projects focus on semi-automated processes. For
example, CommonKADS [Schreiber et al., 2000] and DESIRE [Brazier et al., 1997] are methodologies for
building knowledge systems that use models of agents throughout the development process.

TMKL is particularly closely related to earlier TMK formalisms [Goel and Murdock, 1996, Griffith and
Murdock, 1998, Murdock and Goel, 2001] and Generic Tasks [Chandrasekaran, 1986]. A particularly signif-
icant ancestor of TMKL is the SBF-TMK language in Autognostic [Stroulia and Goel, 1995]. Autognostic
uses SBF-TMK models to adapt agents that fail to address the task for which they were designed. One of
the agents that Autognostic adapts is Router, a case-based navigation planner. Navigation cases in Router
are organized around a domain model. Autognostic-on-Router can modify the domain model and thus
reorganize the cases. ROBBIE [Fox and Leake, 1995] uses an intentional model for more directly refining
case indexing. In contrast, CASTLE [Freed et al., 1992] uses an intentional model of a chess-playing agent
to learn domain concepts such as fork and pin.

Adaptation in REM is used to add new capabilities to an agent. This distinction is more a matter of
perspective than an absolute division. Some sorts of adaptation can be alternatively seen as repairing a
failure (as in Autognostic) or adding new capability (as in REM). This difference in perspective significant
because it affects the way that these systems address these challenges. For example, the fact that Auto-
gnostic only performs modifications after execution is a direct reflection of its specific purpose; a fault in



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

J. William Murdock and Ashok K. Goel 25

a system cannot be repaired until after there is evidence that there is a fault. In contrast, because REM
allows a user to request that a new (unimplemented) task be addressed, it can be required to perform
adaptation before it can even attempt execution.

Autognostic and REM use different formalizations of TMK. REM’s TMKL provides much more expres-
sive representation of concepts, relations, and assertions than the SBF-TMK language in Autognostic; this
additional power is derived from the fact that TMKL is built on top of Loom. The added capabilities of
Loom are very useful in adaptation for new tasks, since reasoning without traces often demands more elab-
orate knowledge about domain relationships and their interactions with tasks and methods. The relation
mapping algorithm in Section 5.2.3 provides a particularly substantial example of how knowledge of the
domain can be used in adaptation.

TMKL also provides a more elaborate account of how primitive tasks are represented than the SBF-TMK
formalism in Autognostic does. Primitive tasks in Autognostic always include a link to a LISP procedure
that implements the task; because Autognostic cannot inspect or reason about these procedures, it cannot
make changes to them. Thus any modifications to the building blocks of the agent in Autognostic must
be done by a programmer. TMKL does allow primitive tasks to include a link to a LISP procedure,
and, like Autognostic it is unable to modify these procedures. However, TMKL also allows other sorts
of primitive tasks, which are defined using logical assertions or queries. These representations can be
directly manipulated and modified by REM’s adaptation processes. Some sorts of primitive functionality
may not be adequately represented by these sorts of primitives in which case they must be implemented
in LISP. However, the existence of some directly manipulable primitives means that REM can alter some
of the primitives in an agent and can also add new primitives to interact with the ones that it cannot
manipulate. Consequently, it is possible for agents in REM to change both models and primitive tasks
within the models, thus performing completely automated self-adaptation.

8 Conclusions

Design of a practical intelligent agent involves a trade-off among several factors such as generality, efficiency,
optimality, adaptability and knowledge requirements. Much of AI research investigates different points in
the multi-dimensional space formed by these factors. Our work focuses on the trade-off between degree
of adaptability, computational efficiency, and knowledge requirements. We have described an agent design
that represents a novel compromise in this three-dimensional space. In particular, we have described a
model-based technique for agent self-adaptation when (a) the new task is so closely related and similar
to a familiar task that the reasoning process for the familiar task is almost correct for the new task, and
(b) the reasoning process required for addressing the new task is structurally so similar to the reasoning
process required to address the familiar task that it needs only small modifications to obtain the desired
reasoning process for the new task. These conditions may apply even if the solutions to the new task are
radically different from the solutions to the old task.

The model-based technique for self-adaptation described above is computationally efficient, has rea-
sonable knowledge requirements, and provides a significant degree of adaptability. Under typically valid
assumptions, the worst-case cost of relation mapping is quadratic in the size of the model (i.e., the number
of elements in the agent design), and the worst-case cost of fixed-value production is linear in the size of
the processing trace.

The knowledge requirements of the model-based technique are also reasonable: since the agents are
artificial, it is reasonable to assert that functional and compositional design models generally are available
to the designers of the agents. The model-based technique requires only that the agents have these models
and provides the TMKL modeling language for encoding the models. However, at present the model-
based technique can only address small, incremental changes to the functional requirements of the agent;
for example, the relation mapping mechanism requires that the description of a new task be connected
to the description of an existing task via a single known relation such as inversion, generalization, or
specialization.

For simple adaptation problems, the model-based technique successfully identifies both the design ele-
ments that need to be changed and the changes needed. For complex problems, however, the technique can



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

26 REFERENCES

only form partial solutions; for other parts of a solution, it simply prunes the search space by identifying
portions of the agent design that need to be changed and the kinds of changes that are needed. For these
problems, the technique can invoke general-purpose methods such as generative planning and reinforce-
ment learning to form complete solutions. Computational experiments with the technique show that for
large and complex problems (e.g., planning problems with numerous conflicting goals), the cost of the
model-based technique plus localized generative planning and/or reinforcement learning is substantially
less than that of either generative planning or reinforcement learning in isolation.

References

Gregory Abowd, Ashok K. Goel, Dean F. Jerding, Michael McCracken, Melody Moore, J. William Mur-
dock, Colin Potts, Spencer Rugaber, and Linda Wills. MORALE – Mission oriented architectural
legacy evolution. In Proceedings of the International Conference on Software Maintenance - ICSM-

97, Bari, Italy, 1997.
Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. Aritificial Intelligence,

90:281–300, 1997.
Mark Boddy and Thomas Dean. Solving time-dependent planning problems. In N. S. Sridharan, editor,

Proceedings of the Eleventh International Joint Conference on Artificial Intelligence - IJCAI-89, pages
979–984, Detroit, MI, USA, August 1989. Morgan Kaufmann.

F.M.T. Brazier, B. Dunin Keplicz, N. Jennings, and J. Treur. DESIRE: Modelling multi-agent systems in a
compositional formal framework. International Journal of Cooperative Information Systems, 6:67–94,
1997. Special Issue on Formal Methods in Cooperative Information Systems: Multi-Agent Systems.

B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-level building blocks for expert
systems design. IEEE Expert, 1(3):23–30, 1986.

K. Erol, J. Hendler, and D.S. Nau. HTN planning: Complexity and expressivity. In Proceedings of the

Twelfth National Conference on Artificial Intelligence - AAAI-94, Seattle, WA, August 1994. AAAI
Press.

Susan Fox and David B. Leake. Using introspective reasoning to refine indexing. In Proceedings of

the International Joint Conference on Artificial Intelligence - IJCAI-95, pages 391–399, Montreal,
Canada, 1995.

Michael Freed, Bruce Krulwich, Lawrence Birnbaum, and Gregg Collins. Reasoning about performance
intentions. In Proceedings of Fourteenth Annual Conference of the Cognitive Science Society, pages
7–12, Hillsdale, NJ, 1992. Lawrence Erlbaum Associates.

M. R. Genesereth. An overview of meta level architectures. In Proceedings of the Third National Conference

on Artificial Intelligence - AAAI-83, pages 119–124, Washington, D.C., 1983.
Ashok K. Goel and J. William Murdock. Meta-cases: Explaining case-based reasoning. In I. Smith

and B. Faltings, editors, Proceedings of the Third European Workshop on Case-Based Reasoning -

EWCBR-96, Lausanne, Switzerland, November 1996. Springer.
Ashok K. Goel, Ethan Beisher, and David Rosen. Adaptive process planning. Poster Session of the Tenth

International Symposium on Methodologies for Intelligent Systems, 1997.
Todd Griffith and J. William Murdock. The role of reflection in scientific exploration. In Proceedings of

the Twentieth Annual Conference of the Cognitive Science Society, Madison, WI, 1998.
Kristian J. Hammond. Case-Based Planning: Viewing Planning as a Memory Task. Academic Press, 1989.
Barbara Hayes-Roth. An architecture for adaptive intelligent systems. Artificial Intelligence, 72:329–365,

1995.
Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic

search. Journal of Artificial Intelligence Research, 14:253–302, 2001.
Laurie H. Ihrig and Subbarao Kambhampati. Storing and indexing plan derivations through explanation-

based analysis of retrieval failures. Journal of Artificial Intelligence Research, 7:161–198, 1997.
O. Ilghami, D. Nau, H. Muñoz-Avila, and D. W. Aha. CaMeL: Learning methods for HTN planning. In

Proceedings of the Sixth International Conference on AI Planning and Scheduling - AIPS-02, Toulouse,
France, 2002. AAAI Press.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

REFERENCES 27

International Planning Competition. Competition domains. http://planning.cis.strath.ac.uk/competition
/domains.html, 2002. Accessed March 2006.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 1996.

Craig A. Knoblock. Automatically generating abstractions for planning. Artificial Intelligence, 68:243–302,
1994.

David B. Leake, Andrew Kinley, and David Wilson. Learning to improve case adaptation by intropsective
reasoning and CBR. In Proceedings of the First International Conference on Case-Based Reasoning -

ICCBR-95, Sesimbra, Portugal, 1995.
Robert MacGregor. Retrospective on Loom. http://www.isi.edu/isd/LOOM/papers/macgregor

/Loom Retrospective.html, 1999. Accessed August 1999.
Drew McDermott. PDDL, the planning domain definition language. Technical report, Yale Center for

Computational Vision and Control, 1998.
E. Melis and C. Ullrich. Flexibly interleaving processes. In Proceedings of the Third International Con-

ference on Case-Based Reasoning - ICCBR-99, pages 263–275, Munich, Germany, 1999.
Tom M. Mitchell, Rich Keller, and Smadar Kedar-Cabelli. Explanation-based generalization: A unifying

view. Machine Learning, 1(1):47–80, 1986.
J. W. Murdock and A. K. Goel. Localizing planning with functional process models. In Proceedings of

the Thirteenth International Conference on Automated Planning and Scheduling - ICAPS-03, Trento,
Italy, 2003.

J. William Murdock. Self-Improvement through Self-Understanding: Model-Based Reflection for Agent

Adaptation. Ph.D. thesis, Georgia Institute of Technology, College of Computing, Atlanta, GA, July
2001. http://thesis.murdocks.org.

J. William Murdock and Ashok K. Goel. Learning about constraints by reflection. In Eleni Stroulia and
Stan Matwin, editors, Proceedings of the Fourteenth Canadian Conference on Artificial Intelligence -

AI-01, pages 131–140, Ottawa, ON, Canada, 2001.
J. William Murdock and Ashok K. Goel. An adaptive meeting scheduling agent. In Proceedings of the

First Asia-Pacific Conference on Intelligent Agent Technology - IAT-99, Hong Kong, 1999a.
J. William Murdock and Ashok K. Goel. Towards adaptive web agents. In Proceedings of the Fourteenth

IEEE International Conference on Automated Software Engineering - ASE-99, Cocoa Beach, FL,
1999b.

D. S. Nau, S. J. J. Smith, and K. Erol. Control strategies in HTN planning: Theory versus practice. In
Proceedings of the Tenth Conference on Innovative Applications of Artificial Intelligence - IAAI-98,
pages 1127–1133, July 26–30 1998. ISBN 0-262-51098-7.

D. S. Nau, T. C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research, 20:379–404, 2003.

Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation: A theoretical and empirical analysis.
Artificial Intelligence, 76(1–2):427–454, 1995.

Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco, CA, 1998.
Errata from http://www.mkp.com/nils/clarified. Accessed May 2001.

M. Alicia Pérez and Jaime G. Carbonell. Control knowledge to improve plan quality. In Proceedings of

the Second International Conference on AI Planning Systems - AIPS-94, Chicago, IL, June 1994.
Stuart Russell and Eric Wefald. Do the right thing: Studies in limited rationality. Artificial Intelligence.

MIT Press, Cambridge, MA, 1991.
E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5(2):115–135, 1974.
Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel Shadbolt, Walter Van

de Velde, and Bob Wielinga. Knowledge Engineering and Management: The CommonKADS Method-

ology. MIT Press, Cambridge, MA, 2000.
Alberto Maria Segre. Machine Learning of Robot Assembly Plans. Kluwer, 1988.
Barry Smyth and Mark T. Keane. Adaptation-guided retrieval: Questioning the similarity assumption in

reasoning. Artificial Intelligence, 102(2):249–293, 1998.
M. Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial Intelligence, 16(2), 1981.



February 16, 2008 14:50 Journal of Experimental & Theoretical Artificial Intelligence MurdockGoelJETAI

28 REFERENCES

E. Stroulia and Ashok K. Goel. Functional representation and reasoning in reflective systems. Journal of

Applied Intelligence, 9(1):101–124, 1995. Special Issue on Functional Reasoning.
Austin Tate, James Hendler, and Mark Drummond. A review of AI planning techniques. In James Allen,

James Hendler, and Austin Tate, editors, Readings in Planning, pages 26–49. Morgan Kaufmann, San
Mateo, California, 1990.

Manuela Veloso. PRODIGY / ANALOGY: Analogical reasoning in general problem solving. In Topics in

Case-Based Reasoning, pages 33–50. Springer Verlag, 1994.
Manuela Veloso, Jaime Carbonell, Alicia Pérez, Daniel Borrajo, Eugene Fink, and Jim Blythe. Integrating

planning and learning: The PRODIGY architecture. Journal of Experimental and Theoretical Artificial

Intelligence, 7(1), 1995.
Christopher J. C. H. Watkins and Peter Dayan. Technical note: Q-learning. Machine Learning, 8(3), 1992.
Robert Wilensky. Meta-planning: Representing and using knowledge about planning in problem solving

and natural language understanding. Cognitive Science, 5(3):197–233, 1981.


