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Abstract. The Jeopardy! television quiz show asks natural-language questions 

and requires natural-language answers.  One useful source of information for 

answering Jeopardy! questions is text from written sources such as 

encyclopedias or news articles.  A text passage may partially or fully indicate 

that some candidate answer is the correct answer to the question.  Recognizing 

whether it does requires determining the extent to which what the passage is 

saying about the candidate answer is similar to what the question is saying 

about the desired answer.  This paper describes how structure mapping [1] (an 

algorithm originally developed for analogical reasoning) is applied to determine 

similarity between content in questions and passages.  That algorithm is one of 

many used in the Watson question answering system [2]. It contributes a 

significant amount to Watson’s effectiveness. 

1 Introduction 

   Watson is a question answering system built on a set of technologies known as 

DeepQA [2].  Watson has been customized and configured to compete at Jeopardy!, 

an American television quiz show.  Watson takes in a question and produces a ranked 

list of answers with confidence scores attached to each of these answers. 

   One of the stages in the DeepQA question answering pipeline is deep evidence scor-

ing.  This stage receives as input a question and a candidate answer in the context of 

some supporting evidence (typically a passage containing that answer).  Questions 

typically have a focus identified for them (i.e., the term in the question indicating the 

answer being sought).  For example, a deep evidence scorer could be given a question 

like “He was the first U.S. President” and a passage like “George Washington was the 

first U.S. President.”  “He” in the question will be marked as the focus.  If the candi-

date answer is “George Washington,” each of the deep evidence scorers will attempt 

to determine the extent to which what the passage says about the “George Washing-

ton” addresses what the question asks about the “He”.  In this example, there is a 

perfect match, and all of Watson’s deep evidence scoring mechanisms will conclude 

that this passage strongly supports the specified answer.  However, other passages 

may answer the question less directly, or provide evidence for only a portion of what 

the question is asking for (e.g., that Washington was a president). 



 

 

   The examples above do not require any explicit analogy.  One could envision pas-

sages that say (for example) that (a) Charles de Gaul was a great French general who 

fought for the liberation of France, (b) that Charles de Gaulle was the first president 

of the fifth republic of France, and (c) that George Washington was a great American 

general who fought for the liberation of the U.S.; by analogy, one might suspect that 

George Washington was the first president of the U.S.  DeepQA does not explicitly 

do reasoning of this sort, but may in future work.  

   This paper provides a detailed description of one of Watson’s deep evidence scoring 

algorithms: the Logical Form Answer Candidate Scorer (LFACS).  LFACS uses a 

logical form of a question (e.g., a Jeopardy! clue) containing a specified focus term 

and the logical form of a passage containing a specified candidate.  LFACS employs a 

structure mapping algorithm similar to the one described in [1].  LFACS embodies a 

variety of specializations of structure mapping that are driven by the nature of its task.  

For example, LFACS is pragmatic in the sense described in [3], because it has a spe-

cific inference it is intended to draw: the extent to which the candidate answer in the 

passage corresponds to the answer in the clue. 

2 Role in the Architecture 

   The DeepQA architecture is described in [2]; this section provides a minimal 

description of the architecture to explain the context in which LFACS is used.  

DeepQA begins with question analysis, which applies a variety of natural-language 

processing algorithms to the question text.  These algorithms include general purpose 

text processing such as parsing and semantic relation detection.  They also include 

processing that is specific to analyzing questions, e.g., determining the focus.  In 

Jeopardy! a question focus is often denoted by a pronoun with no anaphor or a 

common noun with the word “this” as a determiner.  For example, in the question 

“Ambrose Bierce penned this sardonic reference work in 1906,” the focus is “work.”  

The focus is defined to be the term in the question that would correspond to the an-

swer in a corresponding assertion. 

   Question analysis in DeepQA is followed by primary search and candidate gen-

eration, which finds candidate answers in variety of sources.  Some of those sources 

are natural-language text while others are structured sources such as knowledge bases.  

Answers are subjected to preliminary scoring (including answer typing, etc.), and 

those answers that seem poor (i.e., have a confidence score below a fixed threshold, 

according to a statistical model) are filtered out. 

   All candidate answers that pass through the filter are then processed by supporting 

evidence retrieval.  That component conducts a search for passages that contain the 

candidate answer and as many other terms from the question as possible.  This re-

trieval step provides a set of potentially relevant passages for each answer, regardless 

of where it was originally found (text, knowledge bases, etc.).  Candidate answers that 

were found in text will also have one or more passages from the primary search.  Pas-

sages from both types of search are used as supporting passages. 



 

 

   The supporting passages are analyzed in deep evidence scoring, in which a variety 

of algorithms assess the degree to which the passage provides evidence in support of 

some candidate answer.  LFACS, described below, is one of these deep evidence 

scoring components. 

   The final merging and ranking step combines equivalent candidate answers (e.g., 

“Richard Nixon” and “Richard M. Nixon”) and determines the confidence that each 

answer is correct.  It ranks the answers by their confidence scores.  The final merging 

and ranking component uses statistical machine learning; the features used to compute 

a confidence for each answer come from algorithms throughout the pipeline.  LFACS 

is one source of features used by this component. 

3 Syntactic-Semantic Graphs 

   LFACS reasons over syntactic-semantic graphs of both the question and the pas-

sage.  In these graphs, nodes are terms in the clue (e.g., a word or a proper name) and 

edges encode syntactic and/or semantic relations among those terms.  The syntactic 

portions of the graph are derived from an English-Slot Grammar (ESG) parse [4].  

The semantic portions of the graph are derived from pattern-based relation detectors.  

Syntactic relations are useful for identifying similarity when questions and passages 

have a similar structure (e.g., “He wrote Utopia” – “Thomas More wrote Utopia”).  

Semantic relations are useful when passages use different structures with equivalent 

meaning (e.g., “He wrote Utopia” – “Thomas More, author of Utopia”).  Relation 

detection is very challenging and the relation detection capabilities in DeepQA, while 

very precise, have only a moderate level of coverage.  LFACS can be effective when 

content in passages have similar structure or when they have similar semantics that 

fall within the coverage of our relation detectors.  Because syntactic and semantic 

relations are combined in a single graph, LFACS can combine insights from each.  

For example, consider the following actual Jeopardy! clue: 

    It’s believed Shakespeare wrote part of a 1595 play about this “Utopia” author. 

   Some content in the clue is covered by semantic relations such as the one between 

an author and a work by that author.  However, there are other key relationships in 

this clue such as the one between a play and the person that the play is about.  

DeepQA does not have recognizers for this relationship, but is able to parse the text.  

Consider the following (made-up) sample passage: 

    We saw a 16th century play about Thomas More, who wrote Utopia. 

   The syntactic-semantic graph for this passage a semantic (authorOf) edge between 

Thomas More and Utopia; that edge matches the corresponding semantic edge in the 

graph of the clue.  In addition, passage has syntactic edges that correspond to syntac-

tic edges in the clue. Thomas More in the passage is the object of the preposition 

about, while the focus of the clue is the object of the preposition about in the clue.  As 

a result the matching algorithm (see next section) is able to align the following terms 

in the clue to terms in the passage using semantic and/or syntactic edges: 1595, play, 

about, Utopia, author.  There are still some important terms in the clue that are not 

covered by this passage (e.g., Shakespeare).  Our algorithm assesses the quantity and 



 

 

importance of the terms that it is able to align and asserts a numerical value for how 

strong it considers the match to be; that numerical value is used by the DeepQA final 

merger as one of the features that influences the evaluation of answers. 

4 Algorithm 

   LFACS performs a form of structure mapping.  The algorithm is similar to the one 

described in [1], with customization to reflect the nature of the content (extracted 

NLP results), the fact that LFACS has a single pre-specified inference to draw: 

Specifically, LFACS is trying to judge whether the passage provides support for a 

specific, designated candidate answer.  Below are the key steps in structure mapping 

that are defined in [1], with descriptions of how those steps are realized in LFACS: 

 Local Match Construction: LFACS matches both edges and nodes.  Edges are 

matched using a formal ontology, e.g., the authorOf relation is a subrelation of the 

creatorOfWork relation.  Nodes are matched using a variety of resources for 

determining equivalent terms, e.g., WordNet [5], Wikipedia redirects, and has 

specialized logic for matching dates, numbers, etc. 

 Global Map Construction: Unlike [1], LFACS is only concerned with global 

matches that align the focus to the specified candidate answer.  Thus global map 

construction begins with the focus and candidate answer and search outward from 

those nodes through the space of local matches.  As in [1], the global match 

construction process ensures consistency of global maps, requiring that no single 

node in the question map to multiple nodes in the passage. 

 Candidate Inference Construction: LFACS omits this step because the inference to 

be drawn is implied by its inputs (aligning the focus to the candidate answer). 

 Match Evaluation: As in [1], the total score for a match in LFACS is the sum of the 

match scores for the local match hypotheses included in the maximal consistent 

global map.  Local match scores in LFACS are computed using inverse-document 

frequency (IDF) from our text corpus.  Terms with high IDF scores occur rarely in 

the corpus so the fact that they align with the clue is less likely to be a coincidence 

and thus more likely to imply that the answer is correct. 

In using this algorithm, we have encountered a wide variety of technical issues that 

are specific to natural-language.  For example, some concepts can be expressed as 

either a verb or a noun (e.g., destroy-destruction).  We address those issues through 

some combination of graph preprocessing (e.g., adding edges to indicate the logical 

subject of destruction during relation detection) and specialized logic that is internal 

to the local match construction (e.g., allowing the destroy to match destruction). 

   Our approach to generating local match hypotheses mostly focuses on determining 

equivalence (or at least rough equivalence) between nodes.  This focus reflects the 

fact that we are interested in similarity, but not analogy per se.  If we were to try to 

address examples like the Charles de Gaul analogy in the introduction of this paper, 

we would need to relax those restrictions and adjust the confidence in our conclusions 

accordingly.  This may be extremely important in domains where there is less direct 

evidence involving the candidate answers. 



 

 

5 Evaluation and Conclusions 

   Detailed evaluations of deep evidence scoring components will be presented in a 

future publication.  LFACS has statistically significant impact on question answering 

accuracy when included in either a simple baseline DeepQA question answering 

system or to the complete Watson question answering system that competed with 

human grand champions.  This impact, while significant, is small: less than half of 

one percent in the full system; the full system has an enormous number of answer 

scoring components and there is a great deal of overlap in the signal they provide.  

Other deep evidence scoring components in DeepQA (e.g., counting term matches, 

comparing word order) are more aggressive in what they consider to be a match. 

These aggressive components have the disadvantage that they do not draw on the full 

richness of the syntactic and semantic structure but the advantage that they can draw 

evidence from passages that have little structural similarity to the question. 

   The impact of LFACS when added to the simple baseline was smaller than that of 

the more aggressive components.  However, in the complete system (containing many 

more features), the impact of LFACS (while small in an absolute sense) is larger than 

the impact of those components.  The effect of ablating all of the deep evidence 

scoring components in the full system is much bigger than the effects of ablating any 

of them.  These results have important implications for developers of question 

answering (or similar) technology.  Simple, aggressive approaches are well-suited to 

quickly and easily attaining moderate effectiveness.  However, as a system becomes 

more sophisticated, the opportunities for components of that sort to have impact 

becomes very limitted.  In those cases, more algorithms such as LFACS that make 

effective use of syntatic and/or semantic structure can further enhance the 

effectiveness of a question answering system.  As a result, additional and improved 

algorithms of this sort that draw on the full richness of our deep syntatic and semantic 

analysis are an important area for future research. 
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