

Source: A. Ram and N. Wiratunga (Eds.): ICCBR 2011, LNAI 6880, pp. 6–10, 2011.

© Springer-Verlag Berlin Heidelberg 2011. The original publication is available at

www.springerlink.com

Structure Mapping for Jeopardy! Clues

J. William Murdock

murdockj@us.ibm.com

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Abstract. The Jeopardy! television quiz show asks natural-language questions

and requires natural-language answers. One useful source of information for

answering Jeopardy! questions is text from written sources such as

encyclopedias or news articles. A text passage may partially or fully indicate

that some candidate answer is the correct answer to the question. Recognizing

whether it does requires determining the extent to which what the passage is

saying about the candidate answer is similar to what the question is saying

about the desired answer. This paper describes how structure mapping [1] (an

algorithm originally developed for analogical reasoning) is applied to determine

similarity between content in questions and passages. That algorithm is one of

many used in the Watson question answering system [2]. It contributes a

significant amount to Watson’s effectiveness.

1 Introduction

 Watson is a question answering system built on a set of technologies known as

DeepQA [2]. Watson has been customized and configured to compete at Jeopardy!,

an American television quiz show. Watson takes in a question and produces a ranked

list of answers with confidence scores attached to each of these answers.

 One of the stages in the DeepQA question answering pipeline is deep evidence scor-

ing. This stage receives as input a question and a candidate answer in the context of

some supporting evidence (typically a passage containing that answer). Questions

typically have a focus identified for them (i.e., the term in the question indicating the

answer being sought). For example, a deep evidence scorer could be given a question

like “He was the first U.S. President” and a passage like “George Washington was the

first U.S. President.” “He” in the question will be marked as the focus. If the candi-

date answer is “George Washington,” each of the deep evidence scorers will attempt

to determine the extent to which what the passage says about the “George Washing-

ton” addresses what the question asks about the “He”. In this example, there is a

perfect match, and all of Watson’s deep evidence scoring mechanisms will conclude

that this passage strongly supports the specified answer. However, other passages

may answer the question less directly, or provide evidence for only a portion of what

the question is asking for (e.g., that Washington was a president).

 The examples above do not require any explicit analogy. One could envision pas-

sages that say (for example) that (a) Charles de Gaul was a great French general who

fought for the liberation of France, (b) that Charles de Gaulle was the first president

of the fifth republic of France, and (c) that George Washington was a great American

general who fought for the liberation of the U.S.; by analogy, one might suspect that

George Washington was the first president of the U.S. DeepQA does not explicitly

do reasoning of this sort, but may in future work.

 This paper provides a detailed description of one of Watson’s deep evidence scoring

algorithms: the Logical Form Answer Candidate Scorer (LFACS). LFACS uses a

logical form of a question (e.g., a Jeopardy! clue) containing a specified focus term

and the logical form of a passage containing a specified candidate. LFACS employs a

structure mapping algorithm similar to the one described in [1]. LFACS embodies a

variety of specializations of structure mapping that are driven by the nature of its task.

For example, LFACS is pragmatic in the sense described in [3], because it has a spe-

cific inference it is intended to draw: the extent to which the candidate answer in the

passage corresponds to the answer in the clue.

2 Role in the Architecture

 The DeepQA architecture is described in [2]; this section provides a minimal

description of the architecture to explain the context in which LFACS is used.

DeepQA begins with question analysis, which applies a variety of natural-language

processing algorithms to the question text. These algorithms include general purpose

text processing such as parsing and semantic relation detection. They also include

processing that is specific to analyzing questions, e.g., determining the focus. In

Jeopardy! a question focus is often denoted by a pronoun with no anaphor or a

common noun with the word “this” as a determiner. For example, in the question

“Ambrose Bierce penned this sardonic reference work in 1906,” the focus is “work.”

The focus is defined to be the term in the question that would correspond to the an-

swer in a corresponding assertion.

 Question analysis in DeepQA is followed by primary search and candidate gen-

eration, which finds candidate answers in variety of sources. Some of those sources

are natural-language text while others are structured sources such as knowledge bases.

Answers are subjected to preliminary scoring (including answer typing, etc.), and

those answers that seem poor (i.e., have a confidence score below a fixed threshold,

according to a statistical model) are filtered out.

 All candidate answers that pass through the filter are then processed by supporting

evidence retrieval. That component conducts a search for passages that contain the

candidate answer and as many other terms from the question as possible. This re-

trieval step provides a set of potentially relevant passages for each answer, regardless

of where it was originally found (text, knowledge bases, etc.). Candidate answers that

were found in text will also have one or more passages from the primary search. Pas-

sages from both types of search are used as supporting passages.

 The supporting passages are analyzed in deep evidence scoring, in which a variety

of algorithms assess the degree to which the passage provides evidence in support of

some candidate answer. LFACS, described below, is one of these deep evidence

scoring components.

 The final merging and ranking step combines equivalent candidate answers (e.g.,

“Richard Nixon” and “Richard M. Nixon”) and determines the confidence that each

answer is correct. It ranks the answers by their confidence scores. The final merging

and ranking component uses statistical machine learning; the features used to compute

a confidence for each answer come from algorithms throughout the pipeline. LFACS

is one source of features used by this component.

3 Syntactic-Semantic Graphs

 LFACS reasons over syntactic-semantic graphs of both the question and the pas-

sage. In these graphs, nodes are terms in the clue (e.g., a word or a proper name) and

edges encode syntactic and/or semantic relations among those terms. The syntactic

portions of the graph are derived from an English-Slot Grammar (ESG) parse [4].

The semantic portions of the graph are derived from pattern-based relation detectors.

Syntactic relations are useful for identifying similarity when questions and passages

have a similar structure (e.g., “He wrote Utopia” – “Thomas More wrote Utopia”).

Semantic relations are useful when passages use different structures with equivalent

meaning (e.g., “He wrote Utopia” – “Thomas More, author of Utopia”). Relation

detection is very challenging and the relation detection capabilities in DeepQA, while

very precise, have only a moderate level of coverage. LFACS can be effective when

content in passages have similar structure or when they have similar semantics that

fall within the coverage of our relation detectors. Because syntactic and semantic

relations are combined in a single graph, LFACS can combine insights from each.

For example, consider the following actual Jeopardy! clue:

 It’s believed Shakespeare wrote part of a 1595 play about this “Utopia” author.

 Some content in the clue is covered by semantic relations such as the one between

an author and a work by that author. However, there are other key relationships in

this clue such as the one between a play and the person that the play is about.

DeepQA does not have recognizers for this relationship, but is able to parse the text.

Consider the following (made-up) sample passage:

 We saw a 16th century play about Thomas More, who wrote Utopia.

 The syntactic-semantic graph for this passage a semantic (authorOf) edge between

Thomas More and Utopia; that edge matches the corresponding semantic edge in the

graph of the clue. In addition, passage has syntactic edges that correspond to syntac-

tic edges in the clue. Thomas More in the passage is the object of the preposition

about, while the focus of the clue is the object of the preposition about in the clue. As

a result the matching algorithm (see next section) is able to align the following terms

in the clue to terms in the passage using semantic and/or syntactic edges: 1595, play,

about, Utopia, author. There are still some important terms in the clue that are not

covered by this passage (e.g., Shakespeare). Our algorithm assesses the quantity and

importance of the terms that it is able to align and asserts a numerical value for how

strong it considers the match to be; that numerical value is used by the DeepQA final

merger as one of the features that influences the evaluation of answers.

4 Algorithm

 LFACS performs a form of structure mapping. The algorithm is similar to the one

described in [1], with customization to reflect the nature of the content (extracted

NLP results), the fact that LFACS has a single pre-specified inference to draw:

Specifically, LFACS is trying to judge whether the passage provides support for a

specific, designated candidate answer. Below are the key steps in structure mapping

that are defined in [1], with descriptions of how those steps are realized in LFACS:

 Local Match Construction: LFACS matches both edges and nodes. Edges are

matched using a formal ontology, e.g., the authorOf relation is a subrelation of the

creatorOfWork relation. Nodes are matched using a variety of resources for

determining equivalent terms, e.g., WordNet [5], Wikipedia redirects, and has

specialized logic for matching dates, numbers, etc.

 Global Map Construction: Unlike [1], LFACS is only concerned with global

matches that align the focus to the specified candidate answer. Thus global map

construction begins with the focus and candidate answer and search outward from

those nodes through the space of local matches. As in [1], the global match

construction process ensures consistency of global maps, requiring that no single

node in the question map to multiple nodes in the passage.

 Candidate Inference Construction: LFACS omits this step because the inference to

be drawn is implied by its inputs (aligning the focus to the candidate answer).

 Match Evaluation: As in [1], the total score for a match in LFACS is the sum of the

match scores for the local match hypotheses included in the maximal consistent

global map. Local match scores in LFACS are computed using inverse-document

frequency (IDF) from our text corpus. Terms with high IDF scores occur rarely in

the corpus so the fact that they align with the clue is less likely to be a coincidence

and thus more likely to imply that the answer is correct.

In using this algorithm, we have encountered a wide variety of technical issues that

are specific to natural-language. For example, some concepts can be expressed as

either a verb or a noun (e.g., destroy-destruction). We address those issues through

some combination of graph preprocessing (e.g., adding edges to indicate the logical

subject of destruction during relation detection) and specialized logic that is internal

to the local match construction (e.g., allowing the destroy to match destruction).

 Our approach to generating local match hypotheses mostly focuses on determining

equivalence (or at least rough equivalence) between nodes. This focus reflects the

fact that we are interested in similarity, but not analogy per se. If we were to try to

address examples like the Charles de Gaul analogy in the introduction of this paper,

we would need to relax those restrictions and adjust the confidence in our conclusions

accordingly. This may be extremely important in domains where there is less direct

evidence involving the candidate answers.

5 Evaluation and Conclusions

 Detailed evaluations of deep evidence scoring components will be presented in a

future publication. LFACS has statistically significant impact on question answering

accuracy when included in either a simple baseline DeepQA question answering

system or to the complete Watson question answering system that competed with

human grand champions. This impact, while significant, is small: less than half of

one percent in the full system; the full system has an enormous number of answer

scoring components and there is a great deal of overlap in the signal they provide.

Other deep evidence scoring components in DeepQA (e.g., counting term matches,

comparing word order) are more aggressive in what they consider to be a match.

These aggressive components have the disadvantage that they do not draw on the full

richness of the syntactic and semantic structure but the advantage that they can draw

evidence from passages that have little structural similarity to the question.

 The impact of LFACS when added to the simple baseline was smaller than that of

the more aggressive components. However, in the complete system (containing many

more features), the impact of LFACS (while small in an absolute sense) is larger than

the impact of those components. The effect of ablating all of the deep evidence

scoring components in the full system is much bigger than the effects of ablating any

of them. These results have important implications for developers of question

answering (or similar) technology. Simple, aggressive approaches are well-suited to

quickly and easily attaining moderate effectiveness. However, as a system becomes

more sophisticated, the opportunities for components of that sort to have impact

becomes very limitted. In those cases, more algorithms such as LFACS that make

effective use of syntatic and/or semantic structure can further enhance the

effectiveness of a question answering system. As a result, additional and improved

algorithms of this sort that draw on the full richness of our deep syntatic and semantic

analysis are an important area for future research.

References

1. Falkenhainer, B., Forbus, K. and Gentner, D. (1989). The Structure Mapping Engine:

Algorithm and examples. Artificial Intelligence, 41, 1-63.

2. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,

Murdock, J. W., Nyberg, E., Prager, J., Schlaefer, N., and Welty, C. (2010) Building Wat-

son: An Overview of the DeepQA Project. AI Magazine 31(3):59-79.

3. Forbus, K. and Oblinger, D. (1990). Making SME greedy and pragmatic. Proceedings of

the Cognitive Science Society.

4. McCord, M. C. (1990). Slot Grammar: A System for Simpler Construction of Practical

Natural Language Grammars. Natural Language and Logic: International Scientific

Symposium. Lecture Notes in Computer Science 459. Berlin: Springer Verlag.

5. Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the

ACM Vol. 38, No. 11: 39-41.

