
Multi-dimensional feature merger for Question Answering

Apoorv Agarwal1 J . Will iam Murdock2

Jenni f er Chu-Carrol l2 Adam Lall y2 Adit ya Kal yanpur2

(1) Department of Computer Science, Columbia University, New York, NY, U.S.A.
(2) IBM T.J. Watson Research Center, Yorktown Heights, NY, U.S.A.

apoorv@cs.columbia.edu, {murdockj, jencc, alally,
adityakal}@us.ibm.com

Abstract
In this paper, we introduce new features for question-answering systems. These features are inspired
by the fact that justification of the correct answer (out of many candidate answers) may be present
in multiple passages. Our features attempt to combine evidence from multiple passages retrieved for
a candidate answer. We present results on two data-sets: Jeopardy! and Doctor’s Dilemma. In both
data-sets, our features are ranked highest in correlation with gold class (in the training data) and
significantly improve the performance of our existing QA system, Watson.

Keywords: Question Answering, multi-dimensional feature merger, Watson.

1 Introduction
Most existing factoid question answering systems adopt search strategies and scoring algorithms
with the assumption that a short passage exists in the reference corpus which contains sufficient
information to answer each question. This assumption largely holds true for short and focused
factoid questions such as those found in the TREC QA track (Voorhees and Tice, 2000). Examples of
TREC QA questions include “When did Hawaii become a state?’” and “What strait separates North
America from Asia?’” However, some more complex factoid questions contain facts encompassing
multiple facets of the answer, which often cannot be found together in a short text passage. Consider
the following examples, selected from collections of Jeopardy!1 and Doctor’s Dilemma2 questions,
respectively:

(1) WHO’S WHO IN SPORTS: Born in 1956, this Swedish tennis player won 6 French
Opens & 5 straight Wimbledons (A: Björn Borg)

(2) CARDIOLOGY: Murmur associated with this condition is harsh, systolic, diamond-
shaped, and increases in intensity with Valsalva (A: Hypertrophic cardiomyopathy)

In both examples, information presented in the question can reasonably be expected to be in
documents that describe the respective answer entities. However, it is quite unlikely that all the
information will be present in one or two adjacent sentences in the document. More specifically,
in example (1), we find birth year and nationality information in the basic biographic section of
documents about Björn Borg, while statistics about his tennis record can generally be found in
a section about Borg’s career. Similarly, for example (2), the descriptions of typical murmurs
associated with hypertrophic cardiomyopathy (harsh, systolic, and diamond-shaped) may not fall
under the same section as the impact of Valsalva maneuver on the murmur (which is a factor used
to distinguish hypertrophic cardiomyopathy from aortic stenosis). As a result, a typical passage
retrieved from most reference corpus would cover only a portion of the facts given in the question.

These multi-faceted factoid questions present a challenge for existing question answering systems
which make the aforementioned assumption. Consider the following short passages relevant to the
question in example (2):

(2.1 a) Hypertrophic cardiomyopathy generates a harsh late-systolic murmur, ending at
S2.

(2.1 b) The straining phase of the Valsalva maneuver induces an increase in the intensity
of the systolic ejection murmur of hypertrophic cardiomyopathy.

(2.2 a) A harsh, late-peaking, basal murmur radiating to the carotid arteries suggests
aortic stenosis.

(2.2 b) A classic physical finding of aortic stenosis is a harsh, crescendo-decrescendo
systolic murmur that is loudest over the second right intercostal space and radiates to
the carotid arteries.

Existing systems which evaluate each passage separately against the question would view each
passage as having a similar degree of support for either hypertrophic cardiomyopathy or aortic

1http://www.jeopardy.com; Jeopardy! is a registered trademark of Jeopardy! Productions, Inc.
2http://www.acponline.org/residents_fellows/competitions/doctors_dilemma

Q

CA1

P1 P2 . . . Pm1

. . . CAn

P1 P2 . . . Pmn

Figure 1: Typical question answering scenario. Q refers to question. CA are candidate answers for
question Q, and p refers to passages supporting candidate answers.

stenosis as the answer to the question. However, these systems lose sight of a crucial fact, namely,
that even though each passage covers half of the facts in the question, (2.1 a) and (2.1 b) cover
disjoint subsets of the facts, while (2.2 a) and (2.2 b) address the same set of facts.

In this paper, we introduce the notion of multi-dimensional feature merger or MDM features, which
allow for passage scoring results to be combined across different dimensions, such as question
segments and different passage scoring algorithms. In this motivating example, MDM features
that combine results across question segments would capture the broader coverage of passages (2.1
a) and (2.2 b), and thus enable the system to recognize hypertophic cardiomyopathy as a better
answer for the question than aortic stenosis. We describe a general-purpose MDM feature merging
framework that can be adopted in question answering systems that evaluate candidate answers
by matching candidate-bearing passages against the question. We discuss our implementation of
this MDM feature merging framework on top of our own question answering system, Watson.
Finally, we demonstrate how passage scoring results can be merged across various dimensions in
our system, resulting in 1) new features that are more highly correlated with correct answers than
the base features from which they were derived, and 2) significant component level performance
improvement and 3) end-to-end performance improvement. We present a comprehensive set of
experiments for our current domain of interest – the medical domain and a less comprehensive set
of experiments for Jeopardy! data.

The rest of the paper is organized as follows. In section 2, we describe our feature set. Since we build
on existing state-of-the-art QA system, in section 3, we briefly describe the current system, focusing
on the component of the system that we enhance in this paper. In section 4, we describe passage
scorers in the current system, with specific examples of features that leverage scores assigned to
passages by these scorers. In section 5, we presents a detailed description of the data we use for
training and testing. Additionally, we present experiments and results to show the impact of our
features. Section 6 presents a survey of current work in question answering. Finally, we conclude
and present future direction of research in the last section.

2 Multi-dimensional feature merger (MDM)
Given a question, Q, each of its candidate answer, CA, has a set of supporting passages (Figure 1).
In a typical question-answering system, support of each passage for a candidate answer is quantified.
Then a merging strategy is used to combine the support of all passages for a particular candidate
answer. In this paper, we introduce a general framework for merging support from supporting
passages.

The methodology of calculating the support of a passage for a candidate answer is called passage
scoring (Murdock et al., 2012a). At an abstract level, a passage scorer is responsible for quantifying
how well a passage matches a question. We represent a question and a passage as an ordered set of

sum(~s) avg(~s) std(~s) max(~s) min(~s) non-zero(~s)

cols
∑

j=1
s j

sum(~s)
cols

È

cols
∑

j=1
(s j−avg(~s))2

cols−1
arg max

j∈[1,cols]
s j arg min

j∈[1,cols]
s j |{s j |s j 6= 0∀ j ∈ [1, cols]}|

Table 1: Standard formulae that constitute g(M)
Question large land animal has large ears

P1.1 x1 x2 x3 x4 x5 x6
~f1.1

P1.2 x7 x8 x9 x10 x11 x12
~f1.2

P2.1 x13 x14 x15 x16 x17 x18
~f2.1

P2.2 x19 x20 x21 x22 x23 x24
~f2.2

Table 2: Passage match scores for question and passages in Figure 2.

terms (Q = {q1, q2, . . . , qn}), and (P = {p1, p2, . . . , pm}) respectively, Passage scorers align question
terms to passage terms and assign a score based on how well the terms align. For example, a passage
scorer will take as input Q and P and output a vector of scores that represents how well the passage
matches the question. We denote this vector for P as ~f such that fi is the score of how well one of
the passage terms matches the i th term in the question. Note the length of this vector is fixed per
question but may vary across questions.

We collect all these vectors per question, per candidate answer into a matrix, M . For example, CA1
may be represented as a matrix where row i corresponds to the passage scoring vector for passage
Pi . An element of this matrix, fi, j is the score assigned by one of the passage scorers of how well
passage Pi aligns with the term j in the question Q.

This matrix is of variable dimensions for different candidate answers per question. Number of rows
could be different because the number of supporting passages could be different for each candidate
answer for the same question. Since different questions have different number of question terms,
the number of columns could be different for candidate answers across questions. Therefore, we
cannot capture the distribution of this matrix simply by linearizing the matrix.

In this paper, we define a function f : M → RN , that maps each matrix into feature vector of fixed
length, N . This function is defined as follows:

f (M) =< g(M), g(M ′)>

where M ′ is the transpose of matrix M and g is a function g : M → RN/2 that maps a matrix into
feature vector of fixed length, defined as follows:

g(M) =<sum(~s), avg(~s), std(~s), max(~s), min(~s), dim(~s), non-zero(~s)>

where ~s is a vector of dimensionality dim(~s), such that s j =
∑rows

i=1 fi, j and the remaining standard
formulae are given in Table 1.

Consider an example Jeopardy! question:3 This large land animal also has large ears. Consider
two candidate answers and their supporting passages:

3modified for readability.

[Question]
This large land animal also has large ears

[Candidate Answer 1]
African Elephant

[P1.1]
The African elephant is
a very large land animal

[P1.2]
African Elephants

have large ears

[Candidate Answer 2]
Hippo

[P2.1]
A hippo is a

large land animal

[P2.2]
Hippos have relatively

small ears

Figure 2: A specific example showing candidate answers and supporting passages for a modified
Jeopardy! question. P1.1 means first justifying passage for the first candidate answer.

1. Candidate answer 1: African Elephant

(a) P1.1: The African Elephant is a very large land animal.

(b) P1.2: African elephants have large ears.

2. Candidate answer 2: Hippo

(a) P2.1: A hippo is a large land animal.

(b) P2.2: Hippos have relatively small ears.

This example is shown pictorially in Figure 2

Table 2 abstractly shows how passage scorers assign values to specific question terms for specific
passages. For example, consider the P1.1 row, which represents how well the passage The African
elephant is a very large land animal supports the answer elephant for the question This large land
animal also has large ears. If the passage scorer is effective, it will give a high score to x1, x2
and x3 (because the passage does, indeed, provide strong justification for “elephant” satisfying the
requirements of being large land animal). It will give a very small score (typically 0) to x4, x5, and
x6, because the passage says nothing about elephants having large ears. However, some passage
scorers may be mislead by the fact that the term “large” appears twice question and either one could
align to the one occurrence in the passage. Often some passage scorers match too many terms and
thus assign credit to terms that don’t deserve it while others match too few and miss important
content; this is why we have a diverse collection of scorers and let the classifier sort out how much
to trust each of them.

Using one of the existing merging strategy, say MAX , candidate answer 1, African Elephant, will get
assigned a feature value equal to MAX {(x1+x2+x3+x4+x5+x6), (x7+x8+x9+x10+x11+x12)}.
So either passage P1.1 or passage P1.2 will be selected as an optimal passage. As is apparent from
this merger strategy, it does not attempt to leverage the complementary information in the two
passages. Our merging strategy will attempt to capture the distribution of alignment across passages.
For the matrix for African Elephant, M , f (M) =< g(M), g(M ′) >. First dimension of vectors

Figure 3: Architecture of Watson, state-of-the-art DeepQA system (taken from (Ferrucci et al.,
2010)).

g(M) and g(M ′) will be the same, because sum(~s) = sum(~s′) =
∑12

i=1 x i . But others will be
different. For example, mean(~s) = 1

6
∗ sum(~s), whereas, mean(~s′) = 1

2
∗ sum(~s).

Note, the sum(~s) feature is aggregating the information across passages. In a passage scorer, which
assigns 1 for a match and 0 otherwise, it is clear why this feature will have a higher value for African
Elephant, the correct answer, than Hippo (because Hippo’s don’t have large ears).

Our framework is general in three ways: 1) It is independent on the type of passage scorer, 2) More
matrix operations (like rank(M)), may be easily added to the definition of function g(M), and 3) Our
framework is easily extensible to beyond two dimensions, which can be used to capture additional
orthogonal feature dimensions (see future work section for an example).

In the following sections, we first describe a specific, and state-of-the-art QA system, Watson. We
present where our features fit in the larger architecture. Then we give an overview of specific passage
scorers and merging strategies in the current system, followed by experiments and results showing
that the new features we introduce add value to the current system.

3 Overview of Watson
IBM undertook the challenge to build a question-answering system named Watson that is able to
answer open domain questions, such as those posed in a U.S. quiz show Jeopardy!. An overview of
the architecture of Watson is illustrated in Figure 3. We refer the reader to (Ferrucci et al., 2010) for
a detailed description of the architecture. In this section, we present a high level overview of the
system pointing out where our features fit in.

The DeepQA system analyzes a question, Question Analysis (Lally et al., 2012), and generates
multiple possible candidate answers, Hypothesis Generation (Chu-Carroll et al., 2012).It then
applies many different answer scoring algorithms, each of which produces features that are used to
evaluate whether the answer is correct. One way in which DeepQA evaluates candidate answers is
to first retrieve passages of text that contain the candidate answer, via a technique called Supporting
Evidence Retrieval; each passage is then scored using a variety of algorithms called passage scorers

<Q1, CA1,−1>,<Q1, CA2,−1>, . . . ,<Q1, CAi , 1>, . . . ,<Q1, CAn1
,−1>

<Q2, CA1,−1>,<Q2, CA2,−1>, . . . ,<Q2, CA j , 1>, . . . ,<Q2, CAn2
,−1>

. . .

<Qm, CA1,−1>,<Qm, CA2,−1>, . . . ,<Qm, CAk, 1>, . . . ,<Qm, CAnm
,−1>

Figure 4: Training and test data for a question-answering system. Each question Q has multiple
candidate answers, CA, where few, if any, are correct (class = 1).

in the Hypothesis and Evidence Scoring phase (Murdock et al., 2012a). All of the features are sent
to a Final Merging and Ranking (Gondek et al., 2012) component, which uses machine learning
techniques to weigh and combine features to produce a single confidence value estimating the
probability that the candidate answer is correct. The features we introduce are extracted and made
available to the machine learning model in the Final Merging and Ranking component, where the
scores assigned by different passage scorers are available. In the next section 4, we give details of
existing passage scorers and their feature merging strategies used prior to the framework introduced
in this paper.

4 Passage scoring
Our question-answering system works by finding candidate answers, employing a variety of algo-
rithms to compute feature values relating to those answers, and then using a statistical classifier to
determine which candidate answer is correct. A question-answering scenario is shown in Figure 1.
For a given question Q, search components find a set of candidate answers {CA1, CA2, . . . , CAn}.
The task of the classifier is to decide which of the candidate answers is the correct answer. Hence
the training and test data for that classifier looks as in Figure 4.

Each candidate answer is associated with one or more passages that contain the candidate answer.
A subset of the algorithms that compute feature values in our system are the passage scoring
components. These components evaluate the evidence that a single passage provides relating to how
well the candidate answer satisfies the requirements of the question. Thus among the feature values
associated with a candidate answer, some will be passage scoring features.

Our passage scorers are described in detail elsewhere (Murdock et al., 2012a). Here we provide
only a brief introduction to provide context for later sections of this paper. We have a variety of
passage scoring algorithms that use different strategies for determining which parts of a question to
attempt to match to each part of a passage and for determining whether two parts of a passage match.
Some attempt to align question terms to passage terms using syntactic structure and/or semantic
relations, while others use word order or ignore the relationship among terms completely (e.g.,
simply counting how many question terms appear in the passage, regardless of whether those terms
are similarly arranged).

Watson’s passage scorers leverage available annotation components developed for the DeepQA
framework, such as dependency parsing, Named Entity (NE) recognition, coreference resolution
and relation detection. The question and the passage are decomposed into sets of terms, where a
term can either be a single token or a multiword token. All of these scorers try to determine the
amount of overlap between the passage and the question by looking at which terms match. The
individual scorers put different restrictions on when a term is considered to match.

Currently, there are four scorers being used in the system:

1. Passage Term Match: Assigns a score based on which question terms are included in the
passage, regardless of word order or grammatical relationship.

2. Skip Bigram: Assigns a score based on whether pairs of terms that are connected or nearly
connected in the syntactic-semantic structure of the question match corresponding pairs of
terms in the passage.

3. Textual Alignment: Assigns a score based on how well the word order of the passage aligns
with that of the question, when the focus is replaced with the candidate answer.

4. Logical Form Answer Candidate Scorer (LFACS): Targets high-precision matching be-
tween the syntactic structures of passages and questions, and is therefore quite restrictive
concerning structural overlap of the question and the passage. Like Skip Bigram, it operates
on syntactic-semantic structural graphs, which contain one node for each lexical item.

Each passage scoring component produces a fixed number of feature value pairs for each candidate
answer within each passage. Some of these values range from 0 to 1, where a high score indicates
that the passage matches the question well based on that passage scorer’s evaluation criteria; other
passage scorers have other ranges. Watson’s final answer merging and ranking component considers
a pre-defined set of features and applies a machine learned model to score each candidate answer.
However, since each candidate has multiple, and generally a varying number of supporting passages,
we use a merger to combine passage scores for < candidate answer, passage > pairs into a fixed set
of features. For example, if a candidate answer has three passages and a passage scorer assigns a
value of 0.5, 0.6, and 0.7 to each passage, these scores may be merged using a merger strategy like
MAX . Using this merger strategy, the feature added to the learning model for the candidate answer
under consideration will be MAX (0.5,0.6, 0.7) = 0.7.

We have the following three distinct algorithms that we use to merge features across passages
(Gondek et al., 2012).

1. Maximum: The final score for the candidate answer is the maximum score for that answer in
any passages found for that answer.

2. Sum: The final score for the candidate answer is the sum of the scores for that answer in each
of the passages found for that answer.

3. Decaying sum: The final score for the candidate answer is computed to be
∑m

i=0
pi

2i , where
p0, p1, . . . , pm are the scores of the passages that contain the answers, sorted in descending
order.

A key limitation of our earlier work is that the passage scorers capture limited complementary
information that the passages have to offer. For example, in Figure 2, a passage scoring component
may assign scores s1.1, s1.2 to passages P1.1 and P1.2 respectively. A merger strategy that takes
maximum across passages will choose MAX (s1.1, s1.2) as the optimal supporting passage. However,
since these passages have complementary information to offer, it would be better to somehow
aggregate this information. This is exactly where our multi-dimensional merging features come into
the picture.

As described in earlier publications (Gondek et al., 2012), for each of our features, we have two
other derived features: a feature for whether that feature is missing and a standardized version of the

Feature name Explanation In terms of Table 2
MDM-
TextualAlignment-
sum-then-mean

For each question term, compute the sum of
the Textual Alignment scores across all pas-
sages, and then compute the mean of the sums

f (M) = [(x1 + x7) +
(x2+ x8)+ (x3+ x9)+
(x4+x10)+(x5+x11)+
(x6 + x12)]/6

MDM-
SkipBigram-
transpose-sum-
then-mean

For each passage, compute the sum of the
Skip-Bigram scores across all question terms,
and then compute the mean of the sums

f (M) = [(x1 + x2 +
. . . + x6) + (x7 + x8 +
. . .+ x12)]/2

MDM-LFACS-
max-then-sum

For each question term, compute the maxi-
mum of the LFACS scores across all passages,
and then compute the mean of the maxima

f (M) =
max(x1, x2, . . . , x6) +
max(x7, x8, . . . , x12)

MDM-
SkipBigramScore-
transpose-
sum-then-
nonZeroColumns

For each passage, compute the sum of the
Skip-Bigram scores across all question terms,
and then compute the number of sums that are
non-zero

Set cnt = 0. If
(x1 + x2 + . . .+ x6) >
0, cnt = cnt + 1. If
(x7+ x8+ . . .+ x12)>
0, cnt = cnt + 1.
F(M) = cnt.

Table 3: Examples of MDM features. First column is the feature name, column 2 a natural language
description of the feature and the third column is the exact mathematical formula in reference to
Table 2 for passages P1.1 and P1.2 belonging to the candidate answer 1.

feature. When the value of a feature is missing, we assert a value of 0 for the feature and a value
of 1 for the corresponding derived missing feature; this allows the learner to distinguish between
cases where the feature actually has 0 value versus cases where it simply did not apply at all. The
standardized version of a feature is computed by subtracting the mean value of that feature and
dividing by the standard deviation for that feature. Both mean and standard deviation are computed
across all answers to a single question, not across all answers to all questions in the test set. The
purpose of the standardized feature is to encode how much the base feature differs from a typical
value of that feature for a single question.

In Table 3, we present examples of some top scoring (in terms of correlation with the gold class)
MDM features. For a passage scoring feature X , we produce the following MDM features: MDM-
X -sum-then-mean (avg(~s)), MDM-X -transpose-sum-then-mean (avg(~s′)), MDM-X -sum-then-max
(max(~s)) etc.

5 Experiments and Results
To demonstrate the generality of our approach, we experimented with two data sets, an open-domain
question set and one focused on the medical domain. We briefly describe these data sets in this
section. Our first open-domain test set is a randomly selected set of 3,505 Jeopardy! questions.
Jeopardy! questions span a large number of domains, including arts and entertainment, history,
geography, and science. These questions are also generally more complex, incorporating multiple
loosely related facts about the correct answers, particularly as compared with typical questions from
the TREC QA track. The last characteristic makes Jeopardy! questions an excellent test set for our
MDM feature merging framework.

Our second test set is a collection of 905 Doctor’s Dilemma questions. Doctor’s Dilemma, also

#Questions #Positive #Negative #Average cand. per Q
Jeopardy! 11,520 12,173 2,555,396 222.87

Doctor’s Dilemma 1,322 2,338 543,963 413.23

Table 4: Data distribution for our data-sets. #Question refers to number of questions. #Positive refers
to number of positive instances i.e. correct answers to questions, #Negative refers to number of
negative instances and #Average cand. per Q refers to the average number of candidates considered
for a particular question. Note, this is simply total number of positive and negative examples divided
by the number of questions in the data-set.

known as Medical Jeopardy, is a competition organized by the American College of Physicians for
medical interns and residents and held each year at the Internal Medicine meeting. The format of
these questions is modeled after Jeopardy!, while their content is focused solely on topics related
to medicine. Although not as linguistically complex as Jeopardy! questions, Doctor’s Dilemma
questions generally also consists of multiple facts about the correct answer, making it suitable as a
test set for MDM features. Following are some examples from the Doctor’s Dilemma domain:

1. The syndrome characterized by joint pain, abdominal pain, palpable purpura, and a nephritic
sediment. Answer: Henoch-Schonlein Purpura.

2. Familial adenomatous polyposis is caused by mutations of this gene. Answer: APC Gene.

3. The syndrome characterized by narrowing of the extra-hepatic bile duct from mechanical
compression by a gallstone impacted in the cystic duct. Answer: Mirizzi’s Syndrome.

We use a supervised learning paradigm, with features extracted as described in previous sections.
We use logistic regression classifier for training and testing. We report results on a held-out test set
for both data-sets. The distribution of training set for the two data-sets are in Table 4. We test on
3,505 Jeopardy! questions and 905 DD questions.

We present three types of analyses to show the usefulness of our features. First, we present the
correlation of our features with the gold class (for the training set only) i.e. correctness of a candidate
answer. Second, we present a component level analysis, where we add our features to a baseline QA
system and show improvement. Third, we present results on the end-to-end Watson system.

5.1 Correlation
A standard way to judge the goodness of features is to look at the features’ Pearson’s r correlation
with the gold class (Hall, 2000). The Pearson’s r correlation coefficient between feature X and gold
standard Y is given by:

r =

∑n
i=1(X i − X̄)(Yi − Ȳ)

p
∑n

i=1(X i − X̄)2
p
∑n

i=1(Yi − Ȳ)2

where X̄ and Ȳ are the arithmetic mean of feature values and gold class values respectively. We
refer to the degree of correlation between the feature and the gold class as the “informativeness” of
the feature. Naturally, we would like to keep features that have high informativeness.

Figure 5: Inform analysis comparison of MDM features with the existing features in the system
trained on Jeopardy! data. X-axis is the feature index (in no specific order) and Y-axis is the %
correlation of features with the gold class.

Figure 5 presents the informativeness of existing features (red squared dots) and MDM features (blue
diamond dots) for the Jeopardy! data-set. In figure 5, the x-axis is the feature index (existing features
indexed from 1 to 535 and new features indexed from 1 to 110) and the y-axis is the informativeness
of the features. For example, the highest informativeness of existing features (square red dot) is 30%
(100 · r), while the highest informativeness of MDM features is 43.2%. Many of the MDM features
have higher informativeness than the most correlated feature in the existing system.

Similar is the case with the medical domain data. Figure 6 presents the informativeness of existing
features (red squared dots) and MDM features (blue diamond dots) for the Doctor’s Dilemma
data-set. The highest informativeness of MDM features is 21.5%, which is comparable to the three
existing features with highest informativeness (between 20% to 21%). However, as the graph shows,
the vast majority of MDM features have substantially higher informativeness than the original
features. the Jeopardy! domain, many of the MDM features are more correlated with answer
correctness than most of the original features.

5.2 Component level analysis
As described in section 3, we add new features in the final merger stage of the system. Our features
are calculated for each of the four passage scorers described in section 4. In this section, we evaluate
the impact of these MDM features when only a single passage scoring component is employed in
the system. To do so, we create a component level baseline for each of our four passage scorers as
follows: on top of the Watson answer-scoring baseline configuration(Ferrucci et al., 2010), which
includes all of the standard question analysis, search, and candidate generation, but only one answer
scorer (which checks answer types using a named entity detector (Murdock et al., 2012b)) and a
simplified configuration for merging and ranking answers. We add each of our existing Passage

Figure 6: Inform analysis comparison of MDM features with the existing features in the system
trained on Doctor’s Dilemma data. X-axis is the feature index (in no specific order) and Y-axis is
the % correlation of features with the gold class.

Term Match, Skip Bigram, Textual Alignment, and LFACS passage scoring, to create four baseline
systems. We then compare each baseline to the system with our MDM features for the corresponding
passage scorer and show a significant gain in Precision@70% and accuracy.

We often consider Precision@70% as a numerical measure that combines the ability to correctly
answer questions and the ability to measure confidence; this metric corresponds to the precision
when the system answers 70% of the questions of which it is most confident.

Table 5 present results for our component level analysis for Doctor’s Dilemma questions. A
component level baseline for each passage scorer was computed as described above. System
performance improves across the board after adding MDM features for a passage scorer. Using

Component Level Baseline With MDM features
Passage Scorer Precision@70% %Accuracy Precision@70% %Accuracy
Passage Term Match 24.9 20.2 29.2 23.4
Skip Bigram 26.8 21.5 28.7 23.3
Textual Alignment 22.9 18.8 25.7 21.1
LFACS 25.7 20.3 28.5 22.4

Table 5: Component level comparison for Doctor’s Dilemma data-set for each of the four passage
scorers. Each component level baseline is the answer-scoring baseline plus features for one of the
passage scorers. All the numbers after adding MDM features for a passage scorer are significantly
better than the baseline by p < 0.05, using McNemar’s significance testing.

Baseline With MDM features
Data-set Precision@70% %Accuracy Precision@70% %Accuracy

Doctor’s Dilemma 37.2 29.2 40.2 31.3

Table 6: End-to-End comparison for medical domain data, Doctor’s Dilemma. Baseline refers
to the configuration with all the current features in the system. With MDM features refers to the
configuration when we add all our MDM features to the existing feature set. This difference in
performance is statistically significant with p < 0.05, using McNemar’s significance testing.

McNemar’s significance test, these are statistically significant improvements over the baseline at
p < 0.05. As is clear from the results, for each of the four passage scorers, adding MDM features
that capture the distribution of the passage scores across multiple passages improves the performance,
in terms of both Precision@70% and % accuracy, by a significant amount.

For the Jeopardy! data-set, for the LFACS passage scorer, Precision@70% improves from 64.9% to
71.3% and % Accuracy improves from 52.2% to 57.3%. Both these improvements are statistically
significant at p < 0.05, using McNemar’s significance testing.

Based on these experimental results, we conclude that addition of MDM features for passage scorers
significantly improves the performance of our QA system.

5.3 End-to-End Analysis
In this section, we present results for running the full Watson system with and without MDM
features. Table 6 shows the Precision@70% and % accuracy performance on the Doctor’s Dilemma
test set. The results show that by adding MDM features to existing system, we are able to get a
statistically significantly better performance than the baseline system: Precision@70% improves
from 37.2 to 40.2 and % accuracy improves from 29.2% to 31.3%.

6 Literature Survey
Question answering has had a long history (Simmons, 1970) and has seen considerable advancement
over the past decade (Maybury, 2004; Strzalkowski and Harabagiu, 2006). However, to the best of
our knowledge, there is no general purpose framework integrated into a QA system that is capable of
aggregating information across multiple pieces of evidence, each analyzed using different analytics
(features), and comparing this with coverage of terms/facts in the input question.

A technique that is complementary to ours is corpus expansion (Schlaefer et al., 2011), in which
corpus documents are expanded to include topically related facts from an external resource (e.g.
Web). Sometimes in this process, pseudo documents are created which contain aggregate information
about a particular entity. This approach helps standard document search by providing better
document-level evidence/scores for the input search terms. The system is more likely to find a
single document that addresses all of the parts of the question in a corpus after it has been expanded.
However, passage scoring still encounters the same underlying problem even with an expanded
corpus: in some cases, there will not be any single passage that addresses all of the requirements of
the question.

The second related approach is question decomposition (Kalyanpur et al., 2012; Felshin, 2005),
which aims at decomposing the question into different facts that need to be independently or
sequentially solved in order to arrive at the correct answer. However, question decomposition does
not deal with the issue of combining multiple pieces of evidence (possibly assessed using different

analytics) for the same fact within a decomposed question (which our approach does). In addition,
the process of decomposing a question into multiple subquestions is an extremely challenging
linguistic one, and is very sensitive to how questions are phrased; a set of rules that are effective at
formulating subquestions from Jeopardy! clues may not be as effective for other types of questions.
Multi-dimensional merging also requires that the question be divided up, but it does not require that
the parts of the question form coherent subquestions, since it is performed after all of the linguistic
analysis and comparison to evidence. In our implementation of multi-dimensional merging, we
simply divide up the question into single terms.

We consider both corpus expansion and question decomposition as complementary to our approach.
Both approaches are included in our baseline Jeopardy! system, and corpus expansion is included in
our baseline medical system. The fact that our results show postive impact on effective question
answering shows that multi-dimensional merging can add value to a system that already uses both
corpus expansion and question decomposition techniques.

Conclusion and perspectives
We introduced a general framework for aggregating evidence from different passages retrieved for
a candidate answer. Moreover, we introduced a novel set of features, multi-dimensional feature
merger or MDM features, that fit this framework and significantly improve the performance of the
current state-of-the-art QA system, Watson. However, our framework is general and not restricted to
Watson. It may be employed in any QA system that captures how well retrieved passages match the
question under consideration.

In this paper, we only considered merging evidence across passages and question terms. However,
this may be easily extended to merging evidence across passage scorers. There might be value
in considering how different passage scorers match supporting passages with candidate answers.
Using our framework, all that is required is adding a new dimension: depth to the two-dimensional
matrix M , thus giving rise to a 3− D matrix, say M3D. Each two dimensional matrix, M in M3D
belongs one passage scorer. Therefore, depth of M3D is the number of passage scorers used to
match supporting passages with the question. In the future, we will explore decomposing and thus
deriving features from this 3− D matrix, possibly using Tensor algebra (Kolda and Bader, 2008).

References
Chu-Carroll, J., Fan, J., Boguraev, B. K., Carmel, D., Sheinwald, D., and Welty, C. A. (2012).
Finding needles in the haystack: Search and candidate generation. IBM Journal Research and
Developement, 56.

Felshin, B. K. . G. B. . S. (2005). Syntactic and semantic decomposition strategies for question
answering from multiple resources. AAAI.

Ferrucci, D. A., Brown, E. W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,
Murdock, J. W., Nyberg, E., Prager, J. M., Schlaefer, N., and Welty, C. A. (2010). Building watson:
An overview of the deepqa project. AI Magazine, 31:59–79.

Gondek, D. C., Lally, A., Kalyanpur, A., Murdock, J. W., Duboue, P. A., Zhang, L., Pan, Y., Qiu,
Z. M., and Welty, C. A. (2012). A framework for merging and ranking of answers in deepqa. IBM
Journal Research and Developement, 56.

Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class machine
learning. 17th International Conference of Machine Learning (ICML), pages 359–366.

Kalyanpur, A., Patwardhan, S., Boguraev, B. K., Lally, A., and Chu-Carroll, J. (2012). Fact-based
question decomposition in deepqa. IBM Journal Research and Developement, 56:13:1–13:11.

Lally, A., Prager, J. M., McCord, M. C., Boguraev, B. K., Patwardhan, S., Fan, J., Fodor, P., and
Chu-Carroll, J. (2012). Question analysis: How watson reads a clue. IBM Journal of Research and
Development, 56.

Maybury, M. T. (2004). New Directions in Question-Answering. Melno Park CA: American
Association for Artificial Intelligence.

Murdock, J. W., Fan, J., Lally, A., Shima, H., and Boguraev, B. K. (2012a). Textual evidence
gathering and analysis. IBM Journal Research and Developement, 56.

Murdock, J. W., Kalyanpur, A., Welty, C. A., Fan, J., Ferrucci, D. A., Gondek, D. C., Zhang, L.,
and Kanayama, H. (2012b). Typing candidate answers using type coercion. IBM Journal Research
and Developement, 56.

Schlaefer, N., Chu-Carroll, J., Nyberg, E., Fan, J., Zadrozny, W., and Ferrucci, D. (2011). Statistical
source expansion for question answering. In Proceedings of the 20th ACM international conference
on Information and knowledge management, CIKM ’11, pages 345–354, New York, NY, USA.
ACM.

Simmons, R. F. (1970). Natural language question-answering systems: 1969. Commun. ACM,
13:15–30.

Strzalkowski, T. and Harabagiu, S. (2006). Advances in Open-Domain Question-Answering. Berlin
Germany: Springer-Verlag.

Voorhees, E. and Tice, D. (2000). Building a question answering test collection. SIGIR, pages
200–207.

	Introduction
	Multi-dimensional feature merger (MDM)
	Overview of Watson
	Passage scoring
	Experiments and Results
	Correlation
	Component level analysis
	End-to-End Analysis

	Literature Survey

